核技术利用建设项目

阿勒泰海关塔克什肯口岸新建 H986 集装箱车辆检查系统 环境影响报告表

报批稿

生态环境部监制

核技术利用建设项目

阿勒泰海关塔克什肯口岸新建 H986 集装箱车辆检查系统 环境影响报告表

建设单位名称:中华人民共和国阿勒泰海关

建设单位法人代表(签名或签章):

通讯地址:阿勒泰地区阿勒泰市银水路11号

邮政编码: 836500

联系人: 尹达

邮件地址: afan_311@163.com 联系电话: 15299702828

编制单位和编制人员情况表

项目编号		0e46uh							
建设项目名称	H ¹	阿勒泰海关塔克什肯口岸	新建H 986集装箱车轴	两检查系统					
建设项目类别		55-172核技术利用建设项	55-172核技术利用建设项目						
环境影响评价文	件类型	报告表							
一、建设单位情	背况	2 曲线/		-					
单位名称(盖章)	中华人民共和国阿勒泰海	送	8					
统一社会信用代	码	111000007344684386	地						
法定代表人(签	章)	黄群	印蓋						
主要负责人(签	字)	尹达尹达		,					
直接负责的主管	人员 (签字)	尹达一大							
二、编制单位情		茶木茶	星辰汇编						
单位名称(盖章)	乌鲁木齐星辰汇峰环保和	R // 7733	14.8 E -E					
统一社会信用代	码	91650102091944073Y							
三、编制人员情	背况	Timo	wall to so so so						
1. 编制主持人			11 11 11						
姓名	职业资	格证书管理号	信用编号	签字					
刘怡	06356	523506660014	BH 053017	asyla					
2. 主要编制人	员	<u> </u>							
姓名	主要	 	信用编号	签字					
刘怡	环境影响分) 析、结论与建议	ВН 053017	as the					
张港峰	建设项目基本情现状、项目工程 射安全与防护	情况、环境质量和辐射 呈分析与污染源项、辐 、附表、附图、附件	BH 069155	3长港 峥					

目录

表1	项目基本情况	1
表2	放射源	10
表3	非密封放射性物质	10
表4	射线装置	11
表5	废弃物(重点是放射性废弃物)	13
表6	评价依据	14
表7	保护目标与评价标准	16
表8	环境质量和辐射现状	22
表9	项目工程分析与污染源项	25
表10	3 辐射安全与防护	33
表1	1 环境影响分析	43
表12	2 辐射安全管理	54
表13	3 结论与建议	59
表14	4 审批	62
附件件件件件图	1 委托书 2 搬迁设备原环评情况 3 海关原有辐射项目验收情况 4 辐射安全许可证 5 检测报告 6 阿勒泰海关关于成立辐射安全领导小组的通知 1 现场踏勘图 2 辐射工作人员培训考核证书 3 制造商通过蒙卡模型计算提供的对应2.5μSv/h及40μSv/h的等剂量曲线	

表1 项目基本情况

建设	战项目名称	阿革	助泰海关塔克什	肯口岸新建H986	集装箱车	辆检查系	 统			
建	建设单位		中华	人民共和国阿勒	泰海关					
沒	法人代表	黄群	联系人	尹达	联系电 话	15299702828				
注	E册地址	新疆维吾尔自治区阿勒泰地区阿勒泰市银水路11号								
项目	建设地点	新疆维吾尔自治区阿勒泰地区青河县塔克什肯镇								
立项	東批部门	,	/	批准文号		/				
	项目总投资 (万元)	2000	项目环保投资 (万元)	24.6		例(环保 总投资)	1.23%			
巧	巨性质	☑新颈	建 □改建 □扩建	≛□其他	占地面	积(m²)	1350			
	放射源	□销售	□Ⅰ类□Ⅲ类□Ⅲ类□Ⅳ类□Ⅴ类							
	74.7.7.1 1/34	□使用	□类(医疗使用)□Ⅱ类□Ⅲ类□Ⅳ类□Ⅴ类							
		□生产		□制备PET月	用放射性药	药物				
应	非密封放射性 物质	□销售			/					
用		□使用		□乙 □丙						
类 型		□生产		□II类 □II	I类					
	射线装置	□销售		□Ⅱ类 □II	I类					
		☑使用		⊿ Ⅱ类 □	II类					
	其他			/						

1.1 项目概况

1.1.1 建设单位概况

阿勒泰海关为乌鲁木齐海关下属处级海关,所辖口岸为塔克什肯口岸,位于新疆伊犁哈萨克自治州阿勒泰地区青河县境内塔克什肯镇,地处东经90°59'22.463",北纬46°08'39.368"。对面为蒙古国科布多省。从塔克什肯入境距青河县城90公里,距阿勒泰市380公里,距乌鲁木齐市510公里。口岸距中蒙边界线15.5公里。东部与蒙古国科布多省的布尔干县接壤,距对方布尔干口岸25公里,距布尔干县城65公里,距科布多省会约265公里。塔克什肯口岸于1989年7月正式通关贸易,为国家一类陆路口岸,是全国对蒙开放的第

二大口岸,新疆对蒙开放的第一大口岸。通关贸易以来,每年都有大批的蒙古客商及国内 外游客在口岸开展边贸互市、旅游购物,同时还有一定数量的游客自塔克什肯口岸进入后 到疆内其他城市观光旅游、购物消费。

1.1.2项目应用的目的和任务由来

1998年6月,海关总署根据国家的要求,决定在全国海关中货运量大的作业现场配备大型集装箱检查系统,该项目确定为H986工程。大型集装箱/车辆检查系统(或称"H986系统"),是海关新兴的查验模式,是先进科技业务一体化的产物,不同海关可能配备不同厂家生产的不同型号的检查系统。本项目涉及使用的"H986系统"为MT1213DE车载移动式集装箱/车辆检查系统。

由于货物吞吐量的增长和国家对安全的日益重视,人工安全检查已经不能满足快速、安全检查的需求,为进一步提高塔克什肯口岸的安全监管能力和查验效率,节省人力成本,塔克什肯口岸拟安装一套由乌鲁木齐机场海关多式联运监管中心搬迁的MT1213DE车载移动式集装箱/车辆检查系统1套,用于货物查验(该设备原有环评批复情况见附件2)。该套设备由同方威视技术股份有限公司(以下简称"同方威视")研发生产,是世界首创的以加速器为辐射源的车载移动式集装箱/车辆检查系统MT1213LT的升级产品,具备主动扫描模式功能,辐射源为1台电子加速器,它采用交替双能(6/3MeV)成像技术,可区分出待查物品中的有机物和无机物,并标注出特定的颜色,帮助海关查验人员在不开箱的情况下快速检查出藏匿在集装箱/车辆中的走私物品、危险化学品和其他违禁物品。

根据《中华人民共和国环境保护法》《中华人民共和国环境影响评价法》《中华人民 共和国放射性污染防治法》《放射性同位素与放射线装置放射防护条例》和《放射性同位 素与射线装置安全许可管理办法》等相关规定,"辐射工作单位在申请辐射安全许可证前, 应当组织编制或者填报环境影响评价文件,并依照国家规定程序报环境保护主管部门审 批"。

根据环境保护部和国家卫生和计划生育委员会《关于发布〈射线装置分类〉的公告》 (公告2017年第66号)的规定,MT1213DE车载移动式集装箱/车辆检查系统属于安全检查 用加速器,属于 II 类射线装置。

根据《建设项目环境影响评价分类管理名录(2021年版)》的现有规定,本项目符合

"五十五、核与辐射"大类下"172、核技术利用建设项目"一栏中"使用Ⅱ类射线装置的"的具体内容。因此,该项目应编制环境影响报告表。

乌鲁木齐星辰汇峰环保科技有限公司接受中华人民共和国阿勒泰海关委托,承担对该项目的环境影响评价工作。接受委托后,公司组织技术人员进行了现场勘查,收集、整理有关资料,对项目的建设情况进行了初步分析,并根据项目的应用类型及项目所在地周围区域的环境特征,在现场勘察、资料调研、预测分析的基础上,按照《辐射环境保护管理导则一核技术利用建设项目环境影响评价文件的内容和格式》(HJ10.1-2016)的基本要求,编制了《阿勒泰海关塔克什肯口岸新建H986集装箱车辆检查系统环境影响报告表》。

1.2 项目建设规模

1.2.1 项目建设规模

建设内容及规模:本项目新增MT1213DE车载移动式集装箱/车辆检查系统1套,利用口岸原有辐射工作人员进行辐射工作。该检查系统检查方式为主动模式,主动模式为待检车辆静止不动,检查系统(射线装置)出束、移动,对集装箱/车辆进行扫描检查。

该项目设置专用设备运行区域,设备运行区域设置于塔克什肯口岸西北侧350m处,项目占地约1350m²。项目拟建设备运行场地位于口岸原有车辆进出道路旁,不新增建设用地。项目建成后检查系统仅在设备运行区域使用,不在设备运行区域场地以外区域运行。检查系统具体参数图如下表。

型号	数量	类别	加速粒子	能量	工作场所	用途
MT1213DE 车载移动式集装箱/ 车辆检查系统	1	II类	电子	6/3MeV交 替双能	H986车辆/货 物检查区	安全检查

表1-1 本项目H986车辆检查系统参数表

项目计划2024年9月开始进行设备安装调试,安装调试委托同方威视公司工程处专业人员进行,建设周期为30天,施工期高峰人数约10人。

1.2.2人员定荷

阿勒泰海关塔克什肯口岸原有辐射工作人员 6 名,本项目不新增辐射工作人员,利用口岸原有辐射工作人员进行辐射工作。6 名辐射安全管理人员拟均由阿勒泰海关统一管理。 另外设备的检维修由同方威视驻地工程师负责,并由同方威视统一管理。辐射工作人员辐 射培训证书情况如表 1-2 所示。

表1-2 辐射工作人员统计一览表

序		性			辐射安全	与防护培训
号	姓名	别	岗位	工作制度	证书编号	有效时间
1	贾飞虎	男	系统控制		FS24XJ2200170	2024.06.16-2029.06
2	李章杰	男	检入、检出		FS24XJ2200164	2024.06.07-2029.06
3	许康	男	图像检查	每班6人,5天8	FS24XJ2200162	2024.06.07-2029.06
4	尹达	男	辐射安全管理人员	小时工作制, 年工作250天	FS24XJ2200014	2024.01.13-2029.01
5	古丽达娜·塔 布斯别克	女	引导员		FS24XJ2200057	2024.03.04-2029.03
6	李彩业	男	检查维修(同方威视 驻场工程师)		FS21XJ1200194	2021.12.14-2026.12

1.3项目选址及周边环境关系

1.3.1 项目选址

本项目位于新疆伊犁哈萨克自治州阿勒泰地区青河县境内塔克什肯镇,项目中心坐标 E: 90°59'12.039"、N: 46°08'46.657"。

1.3.2 项目周边关系

拟建项目位于塔克什肯口岸内,塔克什肯口岸旅检大厅位于项目东南侧约300m处,项目南侧100m处为省道320,400m处为布尔根河,北侧300m为山坡,本项目设备运行区域100m范围内无居民区,学校,幼儿园,医院等敏感建筑。项目周围涉及控制室、引导区、受检货车司机等候区、车辆等候区4个保护目标。口岸已建成固定式H986(型号: MB1215DE(HS))位于塔克什肯镇中石油青河口岸加油站东侧,距本项目约14km(见图1-5),本项目地理位置见图1-1,周边环境关系具体见图1-2。

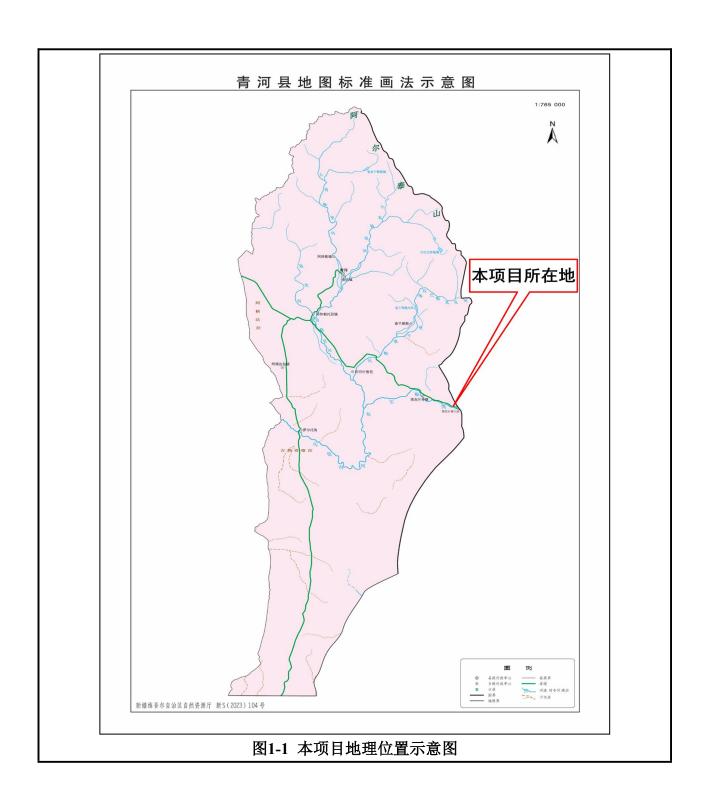


图1-2 项目周围环境布局示意图

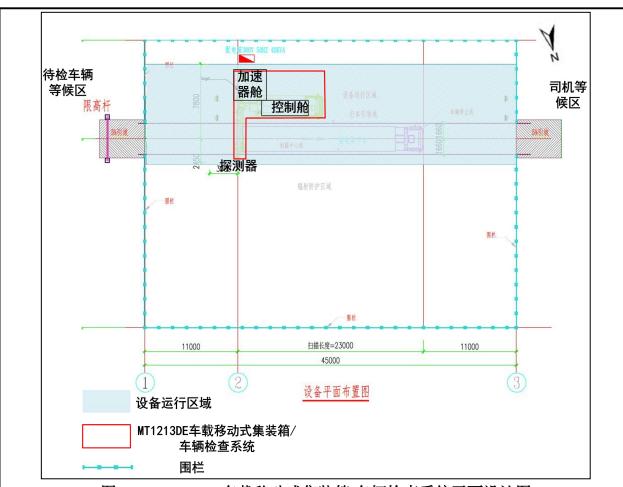


图1-4 MT1213DE车载移动式集装箱/车辆检查系统平面设计图

图1-5 口岸已建成固定式H986与本项目位置关系

1.4 环保执行情况

1.4.1 项目环评及验收情况回顾

海关辐射项目环评情况见表1-3,原有环评验收意见见附件3

表1-3 海关原有核技术利用项目许可情况

序号	环评报告名 称	项目内容	批复	验收	是否与 环评情 况一致
1	《乌鲁木齐 海关阿勒泰 塔克什肯口 岸H986集装 箱检查系统 建设项目环 境影响报告 表》	乌鲁木齐海关在阿勒泰塔克什肯口 岸拟建H986大型集装箱检查系统项 目,用于对大型集装/车辆进行无损透 视检查,项目采用同方威视技术股份 有限公司的MB1215DE(HS)车载组 合移动式检查系统,系统配置1台电 子直线加速器,最大能量为6MeV, 属于II类射线装置。	新环函 〔2015〕 114号	验收报告名称:《阿勒 泰海关塔克什肯口岸 H986集装箱检查系统 建设项目竣工辐射环 境保护验收监测表》 验收报告日期:2018 年4月 验收单位:陕西秦州核 与辐射安全技术有限 公司新疆分公司	一致
2	《乌鲁木齐 海关阿勒泰 红山嘴口岸 H986集装箱 检查系统建 设项目环境 影响报告表》	乌鲁木齐海关在阿勒泰红山嘴口岸 拟建H986大型集装箱检查系统项目, 用于对大型集装/车辆进行无损透视 检查,项目采用同方威视技术股份有 限公司的MB1215DE(HS)车载组合 移动式检查系统,系统配置1台电子 直线加速器,最大能量为6MeV,属 于II类射线装置。	新环函 〔2015〕 115号	验收报告名称:《阿勒 泰海关红山嘴口岸 H986集装箱检查系统 建设项目竣工辐射环 境保护验收监测表》 验收报告日期:2018 年4月 验收单位:陕西秦州核 与辐射安全技术有限 公司新疆分公司	一致

1.4.2 辐射安全许可证

中华人民共和国阿勒泰海关辐射安全许可证编号为新环辐证[00515],发证日期 2024.8.5,有效期至2029.3.24,种类和范围为使用II类射线装置,发证机关为新疆维吾尔自 治区生态环境厅,辐射安全许可证台账信息见附件4。

表1-4 海关已有核技术利用情况表

序号	· 装置名称	规格型号	类别	用途	工作场所	生产厂家
1	大型集装箱检查 系统(H986)	MB1215DE(HS)	II类	安全检查用加速器	塔克什肯口岸 H986查验场 地	同方威视

2	车载式检查系统	MT1213DE车载 移动式车辆检查 系统	II类	安全检查用 加速器	红山嘴口岸查 验场地	同方威视	
---	---------	-----------------------------	-----	-----------	---------------	------	--

1.5 评价目的

- 1、对项目拟建场址进行辐射环境现状监测,以掌握该场址的辐射环境本底状况;
- 2、对项目运行后产生的辐射环境影响进行预测,对周围环境可能产生的不利影响和存在的问题提出防治措施;
 - 3、为项目的辐射环境管理决策提供科学依据。

表 2 放射源

序号	核素名称	总活度(Bq)/ 活度(Bq)×枚数	类别	活动种类	用途	使用场所	贮存方式与地点	备注
/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/
/	/	1	/	/	/	/	/	/

注: 放射源包括放射性中子源,对其要说明是何种核素以及产生的中子流强度(n/s)。

表 3 非密封放射性物质

序 号	核素 名称	理化 性质	活动种类	实际日最大 操作量 (Bq)	日等效最大 操作量 (Bq)	年最大用量 (Bq)	用途	操作方式	使用场所	贮存方式与地点
/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/

注: 日等效最大操作量和操作方式见《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)。

表 4 射线装置

(一)加速器:包括医用、工农业、科研、教学等用途的各种类型加速器

序号	名称	类别	数量	型号	加速 粒子	最大 能量 (MeV)	额定电流(mA)/剂 量率(Gy/h)	用途	工作场所	备注
1	车载移动式 集装箱/车辆 检查系统	II类	1	MT1213DE	电子	6.0MeV	距靶1m的等中心处的X线辐射剂量率为4.38Gy/h	安全检查	H986车辆/ 货物检查区	/
/	/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/	/

(二) X射线机,包括工业探伤、医用诊断和治疗、分析等用途

序 号	名称	类别	数量	型号	最大管电压 (kV)	最大管电流 (mA)	用途	工作场所	备 注
/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/	/

(三)中子发生器,包括中子管,但不包括放射性中子源

序	名称	类数	类数	类数	型号	最大管电	最大靶电	中子强	用途 工作场所	工作场所	氚靶情况			- 备注
号	一	别	量	至与	压 (kV)	流 (µA)	度(n/s)	用坯		活度 (Bq)	贮存方式	数量	田仁	
	/	/	/	/	/	/	/	/	/	/	/	/	/	
	/	/	/	/	/	/	/	/	/	/	/	/	/	
	/	/	/	/	/	/	/	/	/	/	/	/	/	
	/	/	/	/	/	/	/	/	/	/	/	/	/	
	/	/	/	/	/	/	/	/	/	/	/	/	/	

表 5 废弃物 (重点是放射性废弃物)

名称	状态	核素 名称	活度	月排 放量	年排放总量	排放口 浓度	暂存情况	最终去向
臭氧	气态	/	/	极少量	极少量	极低浓度	/	经大气扩散稀 释,其影响可不 考虑
氮氧化物	气态	/	/	极少量	极少量	极低浓度	/	经大气扩散稀 释,其影响可不 考虑
/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/
/	/	/	/	/	/	/	/	/

注: 1. 常规废弃物排放浓度,对于液态单位为mg/L,固体为mg/kg,气态为mg/m³; 年排放总量用kg。

^{2.} 含有放射性的废物要注明,其排放浓度、年排放总量分别用比活度(Bq/L或Bq/kg或Bq/m³)和活度(Bq)。

表6 评价依据

- (1) 《中华人民共和国环境保护法》(2015年1月1日起修订实施,2018年修订);
- (2) 《中华人民共和国环境影响评价法》(2003年9月1日起施行,2018年12月29日修订):
- (3)《中华人民共和国放射性污染防治法》(2003年10月1日起实施);
- (4) 《建设项目环境保护管理条例》(国务院令第682号,2017年):
- (5)《放射性同位素与射线装置安全和防护条例》(中华人民共和国国务院令第449号,根据2019年3月2日《国务院关于修改部分行政法规的决定》第二次修订):

法规文件

- (6) 《放射性同位素与射线装置安全和防护管理办法》(环保部令第 18 号 2011 年 5 月 1 日施行):
 - (7) 《建设项目环境影响评价分类管理名录》(2021版, 2020年11月30日);
- (8) 《关于发布射线装置分类的公告》(环境保护部公告 2017 年第 66 号, 2017 年 12 月 5 日);
- (9)《新疆维吾尔自治区辐射污染防治办法》(新疆维吾尔自治区人民政府令第 192号,2015年7月1日起施行);
- (10) 《放射性同位素与射线装置安全许可管理办法》(生态环境部令第 20 号, 2021 年修订);
- (11)《关于移动使用车载移动式集装箱/车辆检查系统的复函》(环办辐射函〔2018〕 630号)。
 - (1) 《电离辐射防护与辐射源安全基本标准》(GB18871-2002);
- (2)《辐射环境保护管理导则 核技术利用建设项目 环境影响评价文件的内容和格式》(HJ 10.1-2016);

技术标准

- (3)《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015):
- (4)《辐射型货物和(或)车辆检查系统》(GB/T19211-2015);
- (5) 《环境γ辐射剂量率测量技术规范》(HJ1157—2021);
- (6) 《辐射环境监测技术规范》(HJ61—2021);
- (7) 《建筑施工场界环境噪声排放标准》(GB12523-2011)。

I		(1)	《新疆维吾尔自治区环境天然放射性水平调查报告》;
l	11. 71	(2)	《环境影响评价委托书》(中华人民共和国阿勒泰海关);

其他

- (3)《辐射防护导论》(方杰,1988年8月);
- (4) 《NCRP 151》(美国国家辐射防护与测量委员会)。

表7 保护目标与评价标准

7.1 评价范围

本项目使用 II 类射线装置,根据《辐射环境保护管理导则核技术利用建设项目环境影响评价文件的内容和格式》(HJ/T10.1-2016)的规定,"……射线装置应用项目的评价范围,通常取装置所在场所实体屏蔽物边界外50m的范围(无实体边界项目视具体情况而定,应不低于100m的范围)……",本项目设备运行区域无实体屏蔽墙,采用45m×30m围栏划出辐射工作场所,围栏内禁止无关人员进入,并在围栏边界设置一系列安全设施及措施以确保辐射安全。因此本项目辐射环境评价范围确定为围栏边界外延外100m区域,车辆检查装置周边环境和评价范围见图1-2、图1-3。

7.2 保护目标

本项目拟建场所评价范围内无居民住宅,因此本项目保护目标主要为工作场所周围活动的职业人员和周围公众人员,本次评价环境保护目标详见下表7-1。

所在场所	方位	与设备运行区域 的距离(m)	人数	保护目标
控制室	设备运行区域内	1~5	4	辐射工作人员
引导区	设备运行区域内	1~10	2	福州工作八贝
受检货车司机等候区	设备运行区域西北侧	10~100	2人	八人卍昌
车辆等候区	设备运行区域东南侧	43~100	50人	公众成员

表7-1 本项目主要环境保护目标一览表

7.3 评价标准

1、《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中规定:

"第4.3.3.1条 对于来自一项实践中的任一特定源的照射,应使防护与安全最优化,使得在考虑了经济和社会因素之后,个人受照剂量的大小、受照射的人数以及受照射的可能性均保持在可合理达到的尽量低水平;这种最优化应以该源所致个人剂量和潜在照射危险分别低于剂量约束和潜在照射危险约束为前提条件(治疗性医疗照射除外)。"

- "第4.3.3.2条 防护与安全最优化的过程,可以从直观的定性分析一直到使用辅助决策 技术的定量分析,但均应以某种适当的方法将一切有关因素加以考虑,以实现下列目标:
- a) 相对于主导情况确定出最优化的防护与安全措施,确定这些措施时应考虑可供利用的防护与安全选择以及照射的性质、大小和可能性;
- b)根据最优化的结果制定相应的准则,据以采取预防事故和减轻事故后果的措施,从 而限制照射的大小及受照的可能性。"

附录B中规定的职业照射和公众照射的年剂量限值:

附录B1.1职业照射

附录B1.1.1剂量限值

附录B1.1.1.1应对任何工作人员的职业照射水平进行控制, 使之不超过下述限值:

- a)由审管部门决定的连续5年的年平均有效剂量(但不可作任何追溯性平均),20 mSv;
- b) 任何一年中的有效剂量, 50mSv:

公众照射剂量限值

- B1.2 公众照射
- B1.2.1剂量限值

实践使公众中有关关键人群组的成员所受到的平均剂量估计值不应超过下述限值:

- a) 年有效剂量, 1mSv:
- b)特殊情况下,如果各连续年的年平均剂量不超过1mSv,则某一单一年份的有效剂量可提高到5mSv,对辐射工作值的一个合理达到的尽可能低的水平。

根据辐射防护最优化原则,应尽量降低人员受照剂量。本报告表对于辐射工作人员取年有效剂量限值的1/4作为年有效剂量约束值,本项目职业工作人员的职业照射年剂量约束值取5mSv/a;公众人员采用年剂量限值的1/10,即0.1mSv/a作为年计量管理约束值。

2、《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)中规定:

本标准规定了货物/车辆辐射检查系统(以下简称检查系统)的辐射水平控制、安全设施、操作、监测与检查等放射防护要求。

本标准适用于采用下列类型的辐射对货物、运输车辆、货运列车进行扫描成像的检查 系统:

- —加速器(最大电子能量小于10MeV)产生的X射线;
- —密封放射源释放的γ射线;
- (D, D) 和 (D, T) 反应产生的快中子。

本标准不适用于采用X射线机的检查系统、背散射式的检查系统及计算机断层扫描检查系统。

4检查系统分类

- 4.2按结构形式分类:
- a)固定式检查系统:辐射源和探测器系统固定不动,移动被检物通过有用线束区实现辐射成像的检查系统。检查系统的辐射屏蔽通常采用建筑物屏蔽或围栏等方法;

b)移动式检查系统:被检物固定不动,辐射源和探测器系统围绕被检物移动实现辐射成像的检查系统。检查系统的辐射屏蔽可采用自屏蔽、围栏或建筑物屏蔽等方法,可以在不同检查场地移动使用。

6辐射水平控制要求

6.1个人剂量

检查系统工作人员职业照射和公众照射的剂量限值应符合GB 18871的要求,并制定年 计量管理目标值。

- 6.2辐射源箱的泄漏辐射水平
- 6.2.1加速器辐射源箱

无建筑物屏蔽的移动式检查系统中的加速器辐射源箱,加速器泄漏率应不大于2×10⁻⁵; 其他情况下应不大于1×10⁻³。

- 6.3场所辐射水平
- 6.3.1边界周围剂量当量率

检查系统监督区边界处的周围剂量当量率应不大于2.5μSv/h。

6.3.2驾驶员位置一次通过周围剂量当量

对于有司机驾驶的货运车辆或列车的检查系统,驾驶员位置一次通过的周围剂量当量 应不大于0.1µSv。

6.3.3控制室周围剂量当量率

检查系统控制室内的周围剂量当量率应不大于2.5μSv/h,操作人员操作位置的周围剂量当量率应不大于1.0μSv/h。

- 7 辐射安全设施要求
- 7.1 安全联锁装置
- 7.1.1 出東控制开关

在检查系统操作台上应装有出束控制开关。只有当出束控制开关处于工作位置时,射线才能产生或出束。

7.1.2 门联锁

所有辐射源室门、进入控制区的门及辐射源箱体外防护盖板等应设置联锁装置,与辐射源安装在同一辆车上的系统控制室的门也应设置联锁装置。上述任一门或盖板打开时,射线不能产生或出束。

7.1.3 紧急停束装置

在检查系统操作台、辐射源箱体等处应设置标识清晰的紧急停束装置,例如急停按钮、 急停拉线开关等,可在紧急情况下立即中断辐射源的工作。当任一紧急停束装置被触发时, 检查系统应立即停止出束,并只有通过就地复位才可重新启动辐射源。

- 7.1.4 加速器输出剂量联锁
- X 射线检查系统的加速器输出剂量超出预定值时,加速器应能自动停止出束。
- 7.2 其他安全装置
- 7.2.1 声光报警安全装置

检查系统工作场所应设有声光报警安全装置以指示检查系统所处的状态,至少应包括 出束及待机状态。当检查系统出束时,红色警灯闪烁,警铃示警。

7.2.2 监视装置

检查系统辐射工作场所应设置监视用摄像装置,以观察辐射工作场所内人员驻留情况 和设备运行状态。

7.2.3 语音广播设备

在检查系统操作台上应设置语音广播设备,在辐射工作场所内设置扬声器,用于 提醒现场人员注意和撤离辐射工作场所。

7.2.4 辐射监测仪表

根据检查系统特点,配备以下合适的辐射监测仪表:

- a) 个人剂量报警仪和剂量率巡检仪:
- b) 在 X 射线检查系统的加速器出束口处应配置辐射剂量监测仪表实时监测输出剂量,并在检查系统操作台上显示输出剂量率;
 - 8 操作要求
 - 8.1 一般要求
 - 8.1.1 除非工作需要,工作人员应停留在监督区之外。
- 8.1.2 每天检查系统运行前,操作人员应按照表 A.1 的相关要求进行检查,确认其处于正常状态。
 - 8.1.3 每次检查系统出束前,操作人员确认控制区内无人后,方可开启辐射源出束。
- 8.1.4 进入辐射工作场所时,操作人员应确认辐射源处于未出束状态,并携带个人剂量报警仪。
- 8.1.5 检查系统运行过程中,操作人员应通过监视器观察辐射工作场所内的情况,发现 异常情况立即停止出束,防止事故发生。

- 8.1.6 检查系统发生故障或使用紧急停束装置紧急停机后,在未查明原因和维修结束前,禁止重新启动辐射源。
- 8.1.7 检查系统结束一天工作后,操作人员应取下出束控制开关钥匙交安全管理人员妥善保管,并做好安全记录。
 - 8.2 安装调试和维修时的要求
- 8.2.1 检查系统的安装调试和维修人员,除应接受放射防护培训且考核合格外,还应经过设备厂家专业技术培训合格后,方可进行相关的安装、调试和维修工作。
- 8.2.2 在设备调试和维修过程中,如果需要解除安全联锁,应先获得安全管理人员批准, 并设备醒目的警示牌。工作结束后,操作人员应先恢复安全联锁并确认检查系统正常后才 能使用。
 - 9 辐射防护监测与检查
 - 9.2 验收监测和检查
- 9.2.1 检查系统出厂前,生产单位应按本附录 A 中的验收监测和检查要求,对设 备的辐射防护性能进行全面的型式试验,确认与辐射防护和安全有关的设计要求得到满足后方可出厂。
- 9.2.2 检查系统运营单位在产品正式使用前,应按国家有关法规规定委托具有相应资质的机构按附录 A 中的要求,进行验收监测和检查,并经审管部门验收合格后方可投入正式运行。
 - 9.3 常规监测和检查

检查系统在正常运行中,运营单位应按附录 A 中的要求定期进行常规监测和安全检查,及时排除隐患,杜绝事故的发生。

- 3、《建筑施工场界环境噪声排放标准》(GB12523-2011)中规定:
 - 4 环境噪声排放标准
 - 4.1建筑施工中厂界环境噪声不得超过表1规定的排放限值。

表1建筑施工厂界环境噪声排放限制

单位: dB(A)

昼间	夜间		
70	55		

4.2夜间噪声最大声级超过限制的幅度不得高于15dB(A)。

4、大气环境评价标准

《货物/车辆辐射检查系统的放射防护要求》(GBZ 143-2015)中7.6条款规定了:辐射

源室内应有良好的通风,以保证臭氧的浓度低于0.30mg/m³。
《环境空气质量标准》(GB 3095-2012)中二级标准限值要求,臭氧小时平均浓度限值
$0.20 mg/m^3$ $_{\circ}$

表8 环境质量和辐射现状

8.1 项目地理位置和场所位置

本项目位于新疆伊犁哈萨克自治州阿勒泰地区青河县境内塔克什肯镇,项目中心坐标 E:90°59'12.039"、N:46°08'46.657",项目地理位置见上图1-1。

8.2 环境现状评价的对象、监测因子和监测点位

8.2.1 评价对象

拟建车辆检查装置周围的辐射环境现状。

8.2.2 监测因子

环境γ辐射空气吸收剂量率。

8.2.3 监测方案

- 1、监测单位:乌鲁木齐星辰汇峰环保科技有限公司
- 2、监测日期: 2024年6月3日
- 3、监测依据:《辐射环境检测技术规范》(HJ61-2021)
- 4、天气环境条件: 天气: 晴: 温度: 26℃: 相对湿度: 40%
- 5、检测仪器: 见表8-1
- 6、监测点位: 在拟建辐射工作场所四周及监测点, 共布设4个环境γ辐射剂量率监测点。

表8-1 监测仪器参数

仪器名称	环境级X、γ巡测仪
仪器型号	RJ32-3602
仪器编号	XCJC-YQ-026
能量响应范围	能量响应: 20KeV~3MeV;
剂量率测量范围	探测器剂量率范围: 1nGy/h~1000.00μGy/h
检定单位	深圳市计量质量检测研究院
检定证书编号	JL241381196399
有效日期	2024.04.11~2025.04.10

8.2.4 质量保证措施

- 1、合理布设监测点位,保证各监测点位布设的科学性。
- 2、监测方法采用国家有关部门颁布的标准,监测人员经考核合格并持有合格证书上岗。
- 3、监测仪器每年定期经计量部门检定,检定合格后方可使用。
- 4、每次测量前、后,均检查仪器的工作状态是否正常,并对仪器进行校验。

- 5、由专业人员按操作规程操作仪器,并做好记录。
- 6、报告严格实行三级审核制度,经校对、审核,最后签发。

8.3监测点位及结果

2024年6月3日,乌鲁木齐星辰汇峰环保科技有限公司对中华人民共和国阿勒泰海关塔克 什肯口岸新建H986集装箱车辆检查系统周围环境进行现状监测,监测布点图见图8-1。检测报 告见附件5。本项目监测结果如表8-2。

表8-2 环境γ辐射剂量率监测布点及结果一览表

序号	点位描述	监测结果(μSv/h)
1	拟建H986设备运行区域南侧	0.106±0.004
2	拟建H986设备运行区域东侧	0.109±0.002
3	拟建H986设备运行区域北侧	0.097±0.000
4	拟建H986设备运行区域西侧	0.112±0.002

注:环境γ辐射致空气吸收剂量率监测结果未扣除宇宙射线响应的贡献值。

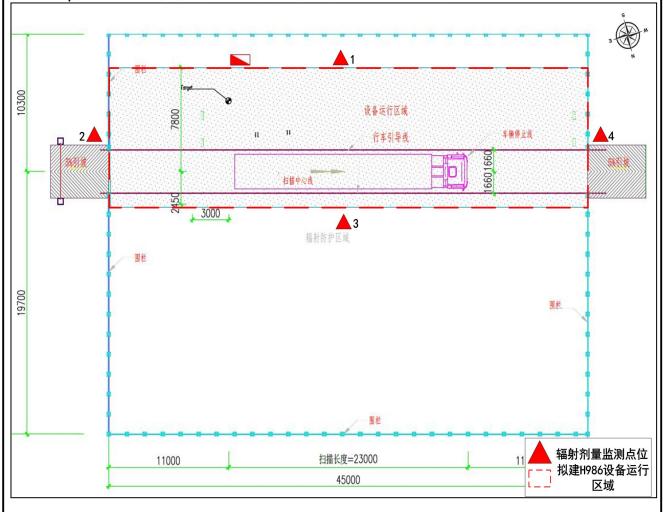


图8-1 拟建H986检查室周围环境监测布点图

8.4 环境现状调查结果的评价
由表8-2的测量值来看,拟建H986车辆检查装置周围环境的X-γ辐射致空气吸收剂量率监
】测结果在0.097~0.112μSv/h之间;对照《新疆维吾尔自治区环境天然放射性水平调查研究报
告》中阿勒泰地区关于"天然贯穿辐射"之"室外剂量率"的范围(0.0693~0.1380μGy/h),
┃ 本项目监测结果符合阿勒泰地区的本底水平范围。

表9 项目工程分析与污染源项

9.1工程设备与工艺分析

MT1213DE车载移动式集装箱/车辆检查系统是同方威视技术股份有限公司研制与生产的加速器辐射成像货物检查系统,该型号的检查系统是为适应国内/外海关、港口、航空和公路运输等大批量集装货物实现快速安全检验而设计。

9.1.1MT1213DE安检系统的组成和功能

本项目MT1213DE型车载移动式检查系统包括以下七个部分:

(1) 加速器分系统

主要由加速管总成、微波总成、真空装置、恒温水冷却装置、供气装置、调制器等部分组成,其主要功能是受控产生X射线脉冲。

(2) 探测器分系统

包括阵列探测器、前端电路、探测器电源装置等几部分。其主要功能是将透过集装箱的X射线转换成模拟电信号,并发送到图像获取分系统。

(3) 图像获取分系统

主要由模数变换与缓冲控制模块、扫描数据获取模块、可编程振荡触发模块等部分组成。

(4) 扫描控制分系统

扫描控制分系统主要由机械控制模块、多用途互连模块、安全联锁装置、电源控制模块、扫描控制站、扫描控制机柜、手动操作台、辐射剂量监测仪、闭路监视装置、内部对讲装置、声光报警装置等组成,用来保证和控制整个系统的运行。扫描控制分系统可让操作员同时通过多角度摄像监控设备对系统工作场地进行实时监控,并提供对整个系统安全联锁装置的控制,主要任务包括三方面:一是为各个分系统供电并提供过载短路保护;二是对系统的整个扫描运行过程进行控制;三是在扫描运行过程中保证人员和设备的安全。本项目扫描控制分系统位于车载操作仓内。

(5) 扫描装置分系统

主要由扫描车、扫描驱动以及厢体间连接机构等组成。其主要功能为承载加速器、探测器及图像获取分系统,并可在扫描控制分系统的控制下对集装箱进行自动扫描。

(6) 运行检查分系统

控制整个系统运行、检查货物图像,管理与系统运行及图像检查有关的所有数据和信息。

(7) 辐射防护设施

包括加速器和探测器周围自带屏蔽措施(包括调制器门、加速器X射线机头的面板加速器舱门等)、栏杆、急停按钮、门机联锁等相关屏蔽防护设施,用以保护相关人员免受射线辐照伤害。

9.1.2安检系统原理

MT1213DE车载移动式集装箱/车辆检查系统是一种加速器成像设备,主要用于对集装箱货物的安全检查。

MT1213DE车载移动式集装箱/车辆检查系统是利用加速器产生的X射线穿过被探查的运输车辆,被高压充气阵列电离室所接收。由于物品不同部位对X放射线的吸收程度不同,则高压充气阵列电离室输出的信号强弱也不同,将强弱不同的信号经图像处理系统处理后,反映在荧光屏上的就是被探查物品的图像在检测过程中,被准直成窄片状的X射线穿过客体后射入与之相匹配的沿垂直方向排列的阵列电离室探测装置。探测装置由大量相互独立的电离室单元按序排列组成,每个电离室单元的输出信号与其所在位置接收到的X射线强度成正比,而此处X射线又与射线穿行路径上所经客体相应部位的吸收能力相关。把各电离室单元的信号采集并按序排列,显示出来,就获得图像的一条扫描线。随检测门架或被检客体的移动,客体图像的一条条扫描线顺序显示出来,就获得反映运输车辆内部物质分布状况的二维辐射投影图像。

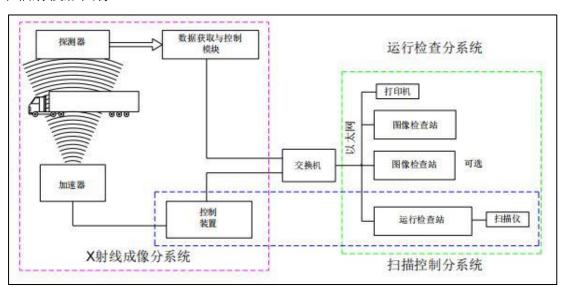


图9-1 检查系统的构成及逻辑机构

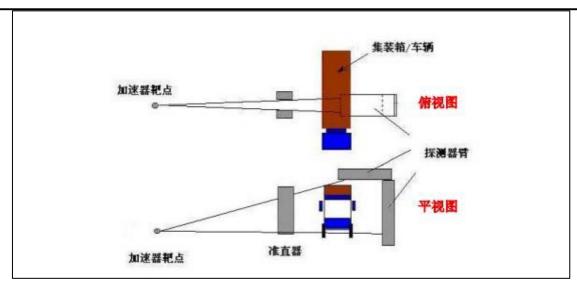


图9-2 MT1213DE检查系统X射线成像分系统示意图

本系统采用交替双能(6/3MeV)驻波电子加速器,它可以按照预先设定的频率交替射出低能(3MeV)和高能(6MeV)的X射线。

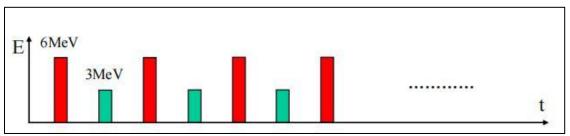


图9-3 6/3MeV交替双能脉冲示意图

当高能和低能X射线穿透相同物质时,因为不同的等效质量衰减率,在扫描图像中得到的灰度值是不一样的。高、低能量X射线对应的被检物质图像灰度值之比取决于物质的等效原子序数,等效原子序数越高,该比值越高,所以通过这种相对应的关系和特殊的双能算法对衰减后的高能X射线信号和低能X射线信号进行处理,可以获得被扫描物质的等效原子序数所在的范围,从而进行物质识别。

由于采用了交替双能成像技术,系统仅需进行一次扫描,就能够同时生成高能、低能灰度图像和物质识别的彩色图像。而不需要来回扫描几次,从而节省了扫描时间、提高了系统的通过率。

9.1.3 工作流程及产污环节

MT1213DE型集装箱/车辆检查系统的工作流程及产污环节如下图所示:

图9-4 MT1213DE安全检查系统的检测流程及产污环节图

综上所述,检查系统对被检车辆/集装箱进行扫描的过程中污染因素主要是X射线、臭氧、氮氧化物。当扫描结束后,X射线也随之消失。

检查系统出束通过自动触发装置进行,无需引导员引导,引导员主要在监督区之外检查查验大厅内及邻近区域的情况,并及时反馈给控制室。被检车辆行进过程依次触发检查系统设置的区域激光来判定是否为车辆驶入,车型、车速等是否符合出束要求,否则加速器不允许出束。检查系统建有大量的货车/集装箱车辆车型数据库,根据数据库中车型数据,被检车辆通过时依次触发区域激光系统。若被检车型不能被系统数据库识别,则加速器不能出束。

本项目车载检查系统为移动式查验方式,适用于精细检查,查验时被检车辆静止不动,车载检查系统以0.4m/s的设计速度移动、出束,对被检车辆完成扫描检查,检查过程中辐射工作场所内无人员停留,被检车辆司机将车辆开入检查区域后,离开检查区域至司机候检区进行等候;设备操作人员位于扫描车控制室内进行加速器的控制及通过电机控制车载检查系统移动、启停。实际查验工作中多数采用移动模式进行车辆安全检查。

设备运行区域外引导员在系统出束时避开出束方向进行巡检。建设单位应加强对待检

车辆司机的提前宣传和告知工作,在查验大厅外合适的位置设置警示标志、检查流程、并进行必要的讲解和指导。具体工作流程如下:

- (1) 工作人员开启系统,系统开机自检。
- (2) 在外场工作人员的指挥下,货物由货主车辆送至货物/车辆辐射检查系统场区内待检停车场。
- (3)根据引导员的指挥,司机驾驶待检货物车辆驶入上坡台,由录入设备采集该货物数据信息,并发送到系统控制室内的计算机内。
- (4)上坡台前的放行杆抬起,待检车辆前轮开上在受检位置,驾驶员下车离开待检车辆,引导员指引司机步行至出口。确认驾驶员步行至司机休息室后,引导员在出口处按下监视装置的确认按钮,将信息反馈回控制室,控制室内工作人员开始扫描工作。
- (5) 控制室接收到引导员和司机在出口外的确认信息,控制室工作人员通过检查系统的监视装置再次确认扫描通道内无人员停留后,将扫描通道两端档杆关闭,准备出束时黄色警灯亮,警铃响起;系统开始出束时红色警灯亮、警铃响。检查系统开始运行并产生X射线,开始扫描。
- (6)扫描过程中加速器产生高能X射线脉冲,射线穿过被检车辆;高灵敏度探测器阵列接收X射线,并生成一系列的数字图像信号;当整个扫描过程结束时,扫描图像会被自动保存到系统中,图像检查站可以获得被检车辆的扫描图像,通过分析图像形状与外形轮廓,有效辨别、发现错报、违禁、危险品,查明待运品名与货物是否一致。
- (7)扫描过程中,司机撤离至司机等候室等待扫描结束,引导员撤离至距离H986运行区域出入口5m外,并在周围巡视,防止人员误入。
- (8)扫描完成后,检查系统停止运行,X射线不再产生,扫描通道挡杆打开,引导员返回,进行下一次的引导工作。
 - (9)扫描结束,司机返回扫描通道,将车辆开出。

9.1.4 MT1213DE安检系统工作负荷

根据建设单位提供的资料,本项目该检查系统一年工作250天,一天工作8个小时,该设备扫描速度为0.4m/s,一次扫描23m长(取保守值,包括集装箱和货车车头)的集装箱需用时约57.5s,每小时检查30辆左右集装箱车辆,则1年中加速器出束时间最多为8h×30×250d×57.5s/3600≈958h。辐射工作人员每班6人,5天8小时工作制,年工作250天。

9.1.5 原有核技术利用项目工艺情况

中华人民共和国阿勒泰海关现有核技术项目均已登记在辐射安全许可证,通过了竣工

验收,本次环评不对已许可的核技术利用项目提出改进意见。

9.1.6 人流、物流路径规划

本项目运行阶段的人流、物流路径规划。具体见图9-5。

- (1)人流路径规划:本项目辐射工作人员活动区域在控制室及设备运行区域。被检车辆司机的路径为将车辆停放待检区域后,下车走出检查室到司机休息区的路径。
 - (2) 物流路径规划: 主要是被探测对象,即被检车辆的移动路径。

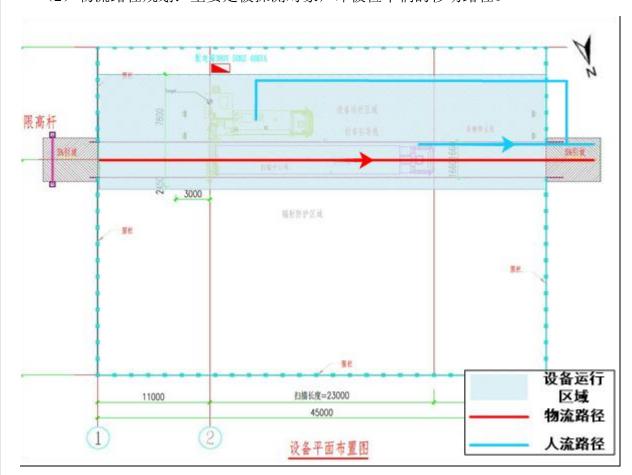


图9-5 MT1213DE安全检查系统的人流、物流路径图

9.2 污染源项描述

表 9-1 MT1213DE型车载移动式检查系统主要性能参数

项目	指标及参数		
射线源	交替双能电子加速器		
张角(竖直方向)	47°		
型号	MT1213DE		
最大能量	最大6MeV(6/3MeV交替双能)		
加速粒子	电子		
物质识别	区分有机物、无机物,分别用特定的颜色标识		

被检查车辆最大尺寸	18m (长) ×2.8m (宽) ×4.8m (高)
扫描高度	地面以上0.4~4.8m
扫描方式	被检物体不动,扫描装置移动
射线束中心轴上 距靶1米处的剂量率	4.38Gy/h
加速器泄漏率	不超过2E-05
有用東方向	有用束朝北
扫描速度	0.4m/s
	扫描高度 扫描方式 射线束中心轴上 距靶1米处的剂量率 加速器泄漏率 有用束方向

9.2.1放射性污染源分析

由加速器的工作原理可知,项目运行期主要污染因子为X射线,来自于系统中的加速器,所产生的X射线是随加速器的开关而产生和消失。根据厂家资料,本项目的MT1213DE型车载移动式检查系统加速器在距靶1m的等中心处的X射线辐射剂量率为4.38Gy/h。加速器产生X射线,扫描货运集装箱后,本项目的辐射源项可分为以下:①透射线,在X射线准直角 范围内的X射线;②泄漏射线,准直角范围以外的 X 射线;③散射线,由X射线的初级辐射投照到物体表面散射产生的射线。

NCRP报告给出的钨(W)发生光致反应(γ, n)的阈值为8.0MeV,拟建设项目采用的电子直线加速器最大能量为6MeV,低于钨靶发生(γ, n)反应的阈值,所以可以不考虑中子贯穿辐射和感生放射性。

9.2.2非放射性污染分析

固体废物:本项目采用数字化终端成像系统,完成扫描后立即显示在显示终端上,不涉及使用胶片等显影材料,不产生固体废物;本项目辐射工作人员定员6人,产生的生活垃圾约为1kg/人·天,按照塔克什肯口岸现有工作制度,每天工作8小时,每周工作5天,每年工作50周来计算,本项目每年产生的生活垃圾为1.5t。辐射工作人员产生的生活垃圾统一收集,依托口岸垃圾处理设施,集中收储,由塔克什肯口岸相关工作人员统一清运到塔克什肯镇垃圾处理场。

废水:本项目采用数字化终端成像系统,完成扫描后立即显示在显示终端上,不涉及使用定影液、显影液,不产生废水;本项目辐射工作人员定员5人,产生的生活污水约为24L/人、天,按照塔克什肯口岸现有工作制度,每天工作8小时,每周工作5天,每年工作50周来计算,本项目产生的每年产生的生活污水为30t。辐射工作人员产生的生活废水依托口岸现有的废水收集系统,集中收储并处理。

废气:设备运行中,空气在X射线的作用下,会使空气电离产生微量臭氧 (O_3) 、氮氧

化物(NO_x)。该检查系统安装在足够开阔的空间内,本项目检查系统安装在开阔的空间内,处于开放状态,采取自然通风形式(空气的对流和扩散)对O₃及NO_x进行稀释。运营期辐射工作场所臭氧浓度满足《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)中"臭氧的浓度低于0.3mg/m³"的限值要求。氮氧化物(主要为二氧化氮)浓度满足《室内空气质量标准》(GB/T18883-2022)中的限值要求。

9.3 事故工况下的污染源项

根据本项目设备的使用特点,以下几种异常情况下工作人员或其他人员可能接触到高 剂量X射线照射:

- (1)由于管理不善,在加速器出束前工作人员、周围公众成员尚未撤离扫描通道或者 在系统出束时现场工作人员、周围公众成员误入辐射控制区,导致上述人群受到不必要的 照射。
- (2)安全联锁装置或报警系统发生故障的情况下,有人误入正在运行的加速器扫描通道,工作人员无法阻止其进入或无法立即终止加速器工作,导致误入人员受到超剂量照射。
 - (3) 维修人员在维修加速器的时候操作不当,加速器误出束,造成的误照射。
 - (4) 检查系统车头自动避让失效,导致司机受到超剂量的照射。

上述事故工况当设备断电后无任何辐射产生,主要污染物源和污染途径同正常工况状态。

表10 辐射安全与防护

10.1 项目安全设施

10.1.1 工作场所布局

根据《关于移动使用车载固定式集装箱/车辆检查系统的复函》(环办辐射函〔2018〕 630号)"相关海关在取得辐射安全许可证后,可在本海关监管区域内移动使用该设备,且 无需建筑物屏蔽。对该型号设备,各省级生态环境部门在批复其环境影响评价文件和颁发 辐射安全许可证时,工作场所可限定为海关监管区域内,无需进一步指定具体的使用位置。"

本项目共设一台车辆检查装置,H986车辆设备运行区域为敞开式设计,外围设置铁艺围栏,整个设备运行区域长45m、宽10.25m,东南-西北走向的矩形区域。通过车载检查系统的自屏蔽结构以及在需开展查验的作业区内采用长45m、宽30m围栏划出辐射工作场所。扫描系统主束方向朝北,设备运行区域东侧为车辆进口,西侧为车辆出口,南侧为控制舱及加速器舱,进口和出口均设有电动档杆和红外报警装置,四周安装围栏。地理位置见图1-1,项目周围环境布局示意图见图1-2。

10.1.2 工作场所分区管理

根据《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中辐射工作场所的分区原则,"把需要和可能需要专门防护手段或安全措施的区域定为控制区;将未被定为控制区,在其中通常不需要专门的防护手段或安全措施,但需要经常对职业照射条件进行监督和评价的区域定为监督区",结合《货物/车辆辐射检查系统的放射防护要求》(GBZ 143-2015)中对于辐射工作场所的分区要求:

"5.1辐射工作场所的分区

检查系统的辐射工作场所按以下方法进行分区:

- a)对无司机驾驶的货运车辆或货物的检查系统,应将辐射源室及周围剂量当量率大于40μSv/h的区域划定为控制区。控制区以外的周围剂量当量率大于2.5μSv/h的区域划定为监督区:
- b)对有司机驾驶的货运车辆的检查系统,应将辐射源室及有用线束区两侧距中心轴不小于1m的区域划定为控制区。控制区以外的周围剂量当量率大于2.5μSv/h的区域划定为监督区:
- c)对有司机驾驶的货运列车的检查系统,应将辐射源室及有用线束区两侧距中心轴不小于10m的区域划定为控制区。控制区以外的周围剂量当量率大于2.5μSv/h的区域划定为监督区:

d)与辐射源安装在同一辆车上系统控制室划定为监督区。"

本项目属于无司机驾驶的货运车辆或货物的检查系统,本项目辐射源与系统控制室在同一辆车上。应将辐射源室及周围剂量当量率大于40μSv/h的区域划定为控制区;控制区以外的周围剂量当量率大于2.5μSv/h的区域划定为监督区,控制室划定为监督区。

根据表11计算结果,为了保守起见,拟将围栏内全部区域划分为控制区,围栏外2m范围设置为监督区,监督区边界可以满足"检查系统监督区边界处的周围剂量当量率应不大于2.5 µ Sv/h。"的剂量要求。

车辆检查装置控制区和监督区示意图见图10-1。



图10-1 车辆检查装置控制区和监督区示意图

10.1.3 辐射防护屏蔽设计

本项目屏蔽设计分为车载检查系统屏蔽防护设计和场地围栏距离防护。

MT1213DE型车载移动式检查系统屏蔽防护设计由同方威视技术股份有限公司自主研发制造,因具体屏蔽物厚度涉及商业机密,厂家提供了如下信息:

"MT1213DE设备屏蔽设施等效屏蔽厚度:控制舱等效铅屏蔽厚度为0.1个什值层,准 直器等效铅屏蔽厚度为3.5个什值层,横探测器臂架等效铅屏蔽厚度为2个什值层,竖探测器 臂架等效铅屏蔽厚度为3.5个什值层。""加速器舱和控制舱使用了足够的屏蔽,保证加速器舱泄漏率后向不超过8E-06,其余方向不超过2E-05,控制舱及通道口方向不超过3E-06,加速器的泄漏率不超过2E-05。"

MT1213DE型车载移动式检查系统最大能量为6MeV,查NCR 151. P158 附图A.1.a; 6MeV条件下铅的什值层厚度为65mm。将加速器舱后向、其余方向、控制舱及通道口方向的泄漏率代入公式11-2,可计算出舱体的等效铅当量厚度。本项目屏蔽设施等效屏蔽厚度见下表10-1。车辆检查装置平面布置示意图见图10-2,车辆检查装置剖面布置示意图见图10-3。

表10-1 MT1213DE集装箱/车辆检查系统设备屏蔽设计

屏蔽体	屏蔽设计等效铅当量 厚度 mmPb	尺寸 (m)
控制舱舱体	6.5	5*2.5*2.2 (长*宽*高)
准直器	227.5	/
横探测器臂架	130	0.1*0.1*5 (长*宽*高)
竖探测器臂架	227.5	0.1*0.1*6.5 (长*宽*高)
加速器舱舱体(后向)	332	
加速器舱舱体(控制舱方向)	359	2.7*2.5*2.2 (长*宽*高)
加速器舱舱体(其余方向)	306	

注: 因具体屏蔽物厚度涉及商业机密,屏蔽设计未列出舱体外壳金属的厚度。

场地围栏由150m铁艺围栏组成,场地围栏长45m, 宽30m, 场地围栏内面积1350m², 出入口均设置电离辐射警示标志。

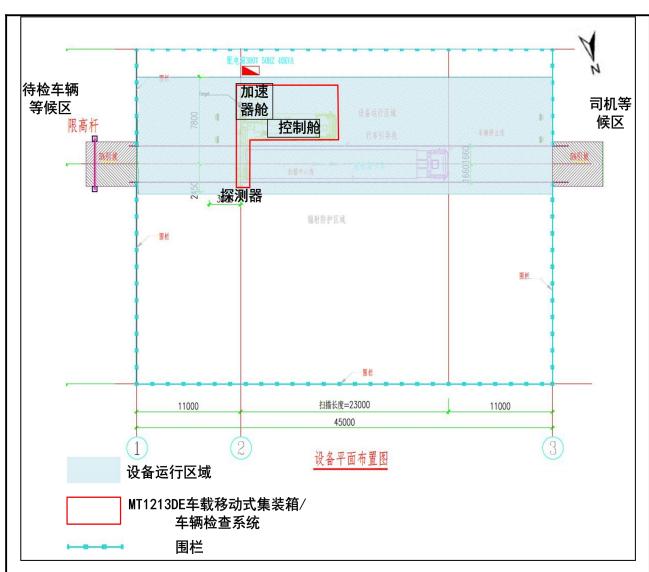


图10-2 车辆检查装置平面布置示意图

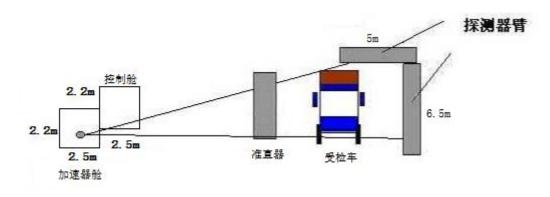


图10-3 车辆检查装置剖面布置示意图

10.1.4 辐射安全措施

根据《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)的相关规定,本项目拟设置以下辐射安全措施。

(1) 辐射源箱的泄漏辐射水平

加速器辐射源箱防护性能较好,加速器泄漏率不大于 2E-05。

(2) 安全联锁装置

1) 出東控制开关

检查系统操作台上装有出束控制开关。只有当出束控制开关处于工作位置时,射线才能产生或出束。

2) 门联锁

辐射源箱体外防护盖板等设置联锁装置,安检系统控制室的门设置联锁装置。任一门或盖板打开时,射线不能产生或出束。

3) 紧急停束装置

在检查系统操作台、辐射源箱体等处设有标识清晰的紧急停束装置,可在紧急情况下 立即中断辐射源的工作。当任一紧急停束装置被触发时,检查系统应立即停止出束,并只 有通过就地复位才可重新启动辐射源。

- 4) 加速器输出剂量联锁
- X 射线检查系统的加速器输出剂量超出预定值时,加速器应能自动停止出束。
- 5) 声光报警安全装置

检查系统工作场所设有声光报警安全装置以指示检查系统所处的状态,包括出束及待机状态。当检查系统出束时,红色警灯闪烁,警铃示警。

6) 监视装置

检查系统辐射工作场所设有监视用摄像装置,以观察辐射工作场所内人员驻留情况和 设备运行状态。

7) 语音广播设备

在检查系统操作台上设有语音广播设备,在辐射工作场所内设置扬声器,用于提醒现场人员注意和撤离辐射工作场所。

8)辐射监测仪表

根据检查系统特点,配备以下合适的辐射监测仪表:

- a)个人剂量报警仪和剂量率巡检仪;
- b)X 射线检查系统的加速器出東口处配置辐射剂量监测仪表实时监测输出剂量,可在检查系统操作台上显示输出剂量率。

10.1.5 人员防护措施要求

(1)辐射工作人员进入监督区域时应佩戴常规个人剂量计,同时配备个人剂量报警仪。

当辐射水平达到设定的报警水平时剂量仪报警,辐射工作人员应立即离开工作区域,同时阻止其他人进入工作区域,并立即向辐射防护负责人报告。

- (2) 应定期测量周围区域的辐射水平或环境的周围剂量当量率,包括操作人员工作位置和周围毗邻区域人员居留处。
- (3)使用剂量仪前,应检查剂量仪是否正常工作。定期检修设备,有使用寿命的必须按期更换,防止因设备故障而发生辐射事故。
 - (4)中华人民共和国阿勒泰海关塔克什肯口岸拟为职业人员配置相应的防护用品。 辐射安全设计符合性分析

表 10-1 本项目与《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)要求 符合性分析

符合性分析					
辐射安全设 施	标准要求	本项目情况	评价		
出束控制开		控制台安装采用钥匙控制的出束控制开关。只有将出束控制开关钥匙插入并拨至"ON"位置后,加速器才允许出束。出束控制开关钥匙拨至"OFF"位置或拔出时,加速器不能出束或立即停止出束。			
门联锁	门及辐射源箱体外防护盖板等 应设置联锁装置,与辐射源安装 在同一辆车上的系统控制室的	在调制器门、加速器机头面板、加速器舱门、电气舱门和扫描通道出入口电动档杆上安装微动开关联锁装置。只有当微动开关联锁装置都关闭时,加速器才允许出束,任一微动开关联锁装置打开时,加速器均不能出束或立即停止			
紧急停束装 置	等处应设置标识清晰的紧急停束装置,例如急停按钮、急停拉线开关等,可在紧急情况下立即中断辐射源的工作。当任一紧急	在控制台、辐射源室外表面、调制器上、配电柜面板上、探测器舱外、扫描通道出入口电动挡杆等处设置红色急停按钮,在辐射工作场所围栏内设置拉线急停开关,当任一紧急停束装置被触发时,加速器应立即停止出束,并只有通过就地复位才可重新启动加速器。。			
加速器输出剂量联锁	量超出预定值时,加速器应能自	加速器出口设有穿透电离室,对加速器输出量进行监测,当输出量监测值超过预设值时,加速器立即停止出束。			
声光报警安 全装置	报警安全装置以指示检查系统 所处的状态,至少应包括出束及 待机状态。当检查系统出束时, 红色警灯闪烁,警铃示警;	本项目横向探测器臂和车辆出入口处上设有警铃和红、黄、绿三种颜色的警灯。 当系统上电时,绿色警灯亮;当加速器准备出束时,黄色警灯亮、警铃响;当加速 器出束时,红色警灯亮、警铃响。提示公众远离电离辐射。			

监视装置	监视用摄像装置,以观察辐射工作场所内人员驻留情况和设备运行状态;	在扫描车车体外及系统控制舱内各安装一个摄像头,在扫描车行走轨道上安装4个摄像头,相应的监视器装在控制室操作台上,以保证操作人员随时监视整个辐射防护区内的情况。	符合
11	音广播设备,在辐射工作场所内	系统控制室操作台设有麦克风,安检系统内外设有多组语音广播装置,随系统配备有对讲设备,用于提醒现场人员注意和撤离辐射工作场所。	符合
辐射监测仪 表	检仪。 b)在X射线检查系统的加速器出 束口处应配置辐射剂量监测仪 表实时监测输出剂量,并在检查 系统操作台上显示输出剂量率。	塔克什肯口岸6名辐射工作人员均为口岸原有人员,6人均配备了个人剂量报警仪,口岸原有2台H986检查装置每台配备有一部X-γ剂量率仪,本项目拟新增1台X-γ剂量率仪。在加速器出口设有穿透电离室,对加速器输出量进行监测,输出剂量显示屏位于控制室。	符合
其他要求	保证臭氧的浓度低于0.3mg/m³。	本项目不设置建筑物实体屏蔽,不涉及辐射源室,不涉及电离废气通风系统,经经验计算,工作时加速器舱内臭氧浓度远低于标准要求。	符合

表10-2 本项目与 《辐射型货物和(或)车辆检查系统》(GB/T 19211-2015) 要求符合性分析

辐射安全 设施	标准要求	本项目情况	评价
	5.2.1 检查系统应配备有急停按 钮等紧急停止设备,使得辐射装 置束流能被自动切断或辐射源自 动屏蔽,紧急停止设备恢复正常 后,系统不应自动启动,需要人 工操作才能重新启动。	本项目在控制台、辐射源室外表面、调制器上、配电柜面板上、探测器舱外、扫描通道出入口电动挡杆等处设置红色急停按钮,在辐射工作场所围栏内设置拉线急停开关,当任一紧急停束装置被触发时,加速器应立即停止出束,并只有通过人工操作就地复位才可重新启动加速器。	符合
5.2 紧急停止设备	5.2.2 急停设备应安装在多个地 点,不仅限于操作控制面板、靠 近辐射源及探测器的地点。	本项目在控制台、辐射源室外表面、调制器上、配电柜面板上、探测器舱外、扫描通道出入口电动挡杆等处设置红色急停按钮,在辐射工作场所围栏内均设置急停开关。	符合
	5.2.3 急停设备的工作方式应为 故障安全型。如果一个急停设备 发生故障,束流应被关断,故障 状态应显示在控制面板上。	本项目急停设备的工作方式为故障安全型。任意一个急停开关发生故障时, 束流均被关断, 且无法启动, 此时故障状态显示在控制面板上。	符合
	5.2.4 如果断电,射线装置停止出 束,辐射源挡板应自动关闭或辐 射源自动回到屏蔽装置中。	本项目一旦发生断电情况,射线装置立即 停止出束。	符合
5.3 安全连	5.3.1 应安装安全联锁装置防止 有人意外接受辐射。辐射束流只	检查系统设置了完善的辐射安全联锁与警 示设施。只有在所有安全联锁设施都处于	符合

次 壮 田	化去氏去宁人联战	****	工类工作业大英县技术这和工类时的经济			
锁装置	能在所有安全联锁		正常工作状态并且检查流程正常时射线源			
	下启动。如果运行		才可以出東,任意一个安全联锁设施不正			
	发生改变,辐射束		常时,射线源不能出束或立即停止出束。			
	闭。安全联锁装置	应设计为故障	系统的辐射安全设计遵循故障安全原则,			
	安全型。		设置冗余、多重的安全装置,并注意采用			
			多样性的部件,以保证当某一部件或系统			
			发生故障时,检查系统均能建立起一种安			
			全状态。			
	5.3.2 安全联锁装5	置应提供连接	本项目安全联锁装置带有连接附加安全设	符合		
	附加安全设备的接	口。	备接口。	11 H		
	5.4.1 应安装状态	指示器提供声	本项目在扫描车探测器臂上装有红、黄、			
	光报警信号。报警	信号至少应在	绿三种颜色的警灯和警铃。报警型号在束	符合		
5.4 状态指	東流发出前5s启动	,并在扫描期	流发出前5s启动,在扫描期间一直持续到	行口		
 示灯	间一直持续到束流。	停止。	束流停止。			
<u> </u>	5.4.2 电离辐射警点	示符号或者标	 本项目在辐射工作场所围栏四周均设有电			
	志牌应放置在辐射	工作场所边界	本项自任福州工作场所固但四周均仅有电	符合		
	处。					
 5.5 监视系			本项目在扫描车车体外安装一个摄像头在			
1 3.3 血化尔	应提供视频监视系	统,便于操作	扫描车行走轨道上安装4个摄像头,相应的			
统	人员观察整个辐射。	工作场所。	监视器装在控制室操作台上,以保证操作	符合		
			人员随时监视整个辐射防护区内的情况。			
	制造商应说明检查	系统的扫描速				
	度要求,系统在要	求的速度范围				
	内工作时,各部件	应运转正常。				
	在正常工作状态下	,不同类型的				
	检查系统应分别达	到表4中所规				
	定的最低扫描速度要求。					
7.1 要求	表4 扫描速度要求分类		本项目移动式扫描模式最低扫描速度为:	符合		
	类别	最低扫描速度	0.4m/s。满足标准中最低扫描速度的要求。	, , , ,		
	固定式检查系统	0.4m/s				
	移动式检查系统	0.4m/s				
	通过式快速检查系统	1.5m/s				
	航空托盘类检查系统 0.2m/s					
	9.2.1 要求 对于仅才用距离防护的检查系统 2 周围剂 (例如: 车载移动式),作为该					
I I			制造商通过蒙卡模型计算,提供了对应			
量当量率等	类产品的型式试验		2.5μSv/h及40μSv/h的等剂量曲线(详见附	符合		
剂量曲线	量和提供检查系统		图1)。			
	周围剂量当量率2.	5μSv/h的等剂				
	量曲线。					

系统辐射安全设施逻辑图见10-4。

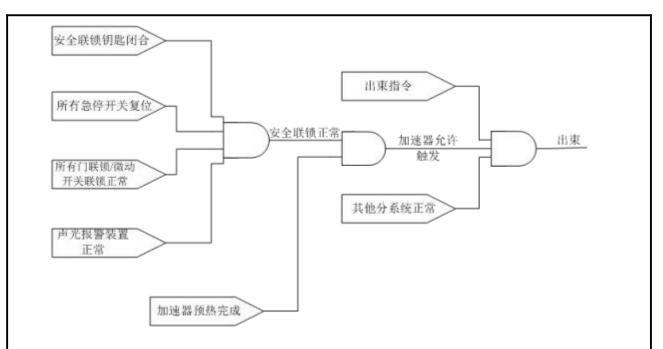


图10-4 MT1213DE 型集装箱/车辆检查系统安全联锁逻辑图

10.1.6 职业人员个人防护用具的配备与管理要求

- (1) 应根据实际需要为工作人员提供适用、足够和符合有关标准的个人防护用具,并 应使他们了解其所使用的防护用具的性能和使用方法。
- (2)工作人员上岗前必须接受有关辐射防护培训,掌握一定的安全防护知识和技能,并经考核合格,在工作中注意做好个人防护,通过时间屏蔽、距离屏蔽,缩短受照时间及受照剂量率,将个人受照剂量合理可行地控制在尽可能低的水平。
- (3)个人防护用具应有适当的备份,以备在应急事件中使用。所有个人防护用具均应 妥善保管,并应对其性能进行定期检验。
- (4)中华人民共和国阿勒泰海关塔克什肯口岸拟投入辐射性工作人员5名,工作人员 必须佩带个人剂量牌、个人剂量报警器,定期体检,建立个人健康档案。

10.2 三废的治理

加速器最大能量未超过10MeV,不产生含有感生放射性的加速器废靶。不产生放射性废水、废气。

10.2.1 固体废物

固体废物:本项目采用数字化终端成像系统,完成扫描后立即显示在显示终端上,不涉及使用胶片等显影材料,不产生固体废物;本项目辐射工作人员定员6人,产生的生活垃圾约为1kg/人·天,按照现有工作制度,每天工作8小时,每周工作5天,每年工作50周来计算,本项目每年产生的生活垃圾为1.5t。辐射工作人员产生的生活垃圾统一收集,依托海关现有

的垃圾处理设施,集中收储,由专业的环卫清运单位统一清运到塔克什肯镇垃圾填埋场。

10.2.2 废水

本项目采用数字化终端成像系统,完成扫描后立即显示在显示终端上,不涉及使用定影液、显影液,不产生废水;本项目辐射工作人员定员6人,产生的生活污水约为24L/人·天,按照塔克什肯口岸现有工作制度,每天工作8小时,每周工作5天,每年工作50周来计算,本项目产生的每年产生的生活污水为36t。辐射工作人员产生的生活废水依托口岸现有的废水收集系统,集中收储并处理。

10.2.3 废气

设备运行中,空气在X射线的作用下,会使空气电离产生微量臭氧(O₃)。本项目检查系统安装在开阔的空间内,处于开放状态,采取自然通风形式(空气的对流和扩散)对O₃及NO_x进行稀释。运营期辐射工作场所臭氧浓度满足《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)中"臭氧的浓度低于0.3mg/m³"的限值要求。

表11 环境影响分析

11.1建设阶段对环境的影响

本项目建设内容主要为安检区域混凝土地面浇筑、设备安装、内部装修等,按照作业性质具体分为以下几个阶段:

- (1) 清理场地阶段: 清理地面杂物, 平整场地等;
- (2) 土石方施工阶段: 主要是土石方开挖等;
- (3) 地面施工阶段: 场地混凝土工程:
- (4) 设备安装、装修阶段: 车辆检查装置安装、调试等;
- (5) 扫尾阶段: 土方回填、清理现场等。

施工期主要环境影响为扬尘、废水、噪声和固体废物,无辐射环境影响,具体如下:

- (1)施工扬尘:主要来源于平整场地、土方开挖与回填产生的扬尘以及建筑材料(灰、沙、水泥、砖块等)的现场搬运及堆放、施工垃圾的堆放与清理、车辆及施工机械往来造成的现场道路扬尘以及运土方车辆可能存在的遗洒造成的扬尘等,但这些方面的影响仅局限于施工现场附近区域,施工结束后即可消除影响。
- (2)废水:施工期废水主要包括基础施工时产生的泥浆废水、冲洗路面及车辆废水以及施工人员产生的生活污水。施工泥浆废水、冲洗路面及车辆废水经沉砂、除渣等预处理后,会用于道路喷洒降尘等。施工人员生活污水经过统一收集,由塔克什肯镇市政部门组织设备车辆汇集后排入市政污水管网。
- (3)噪声:本项目施工过程中各种机械设备产生的噪声,将对施工现场附近声环境产生一定的影响,本项目施工地点周围无居民住宅,因此,本项目施工产生的噪声对施工现场周围环境影响很小。

施工阶段通过合理安排工期,将建筑施工环境噪声危害降到最低程度。本项目在施工过程中对施工机械采取减震、隔声等措施,夜间不施工,昼间噪声可满足《建筑施工场界环境噪声排放标准》(GB12523-2011)中规定的70dB(A)的标准限值要求。

(4)固体废物:项目施工期间,产生少量以建筑垃圾为主,生活垃圾为辅的固体废弃物,生活垃圾以每人每天0.30kg,按照10人工程队计算,产生量为3.0kg/d。施工建筑垃圾采取固点堆放,清运至当地建筑垃圾填埋场;生活垃圾依托塔克什肯口岸垃圾处理设施,集中收储,统一运输到至塔克什肯镇垃圾填埋场处置。

设备安装调试过程均由厂家专业人员进行,设备调试时应设置醒目的指示牌,期间加强巡视工作,禁止无关人员在设备附近逗留。

综上所述,本项目在施工期的环境影响是短暂、可逆的,随着施工期的结束而消失。 建设单位在施工阶段采取以上污染防治措施,并加强监管,将施工期的影响控制在场地局 部区域,对周围环境影响较小。

11.2 项目运营阶段对环境的影响

11.2.1辐射屏蔽计算参数

本项目 MT1213DE 集装箱/车辆检查系统电子加速器参数详见下表 11-1, 屏蔽设计参数 详见下表 11-2, 屏蔽计算 TVL 取值情况见表 11-3。

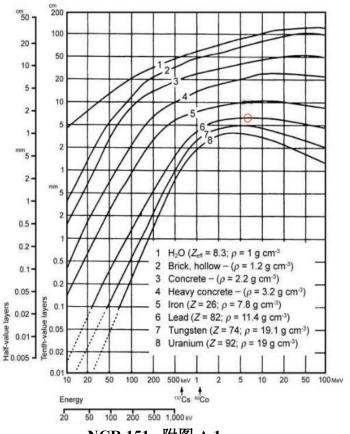
表 11-1 电子加速器参数

水 11-1 七 7 加 龙斯乡 					
项目	指标及参数				
射线源	交替双能电子加速器				
张角(竖直方向)	47°				
型号	MT1213DE				
最大能量	最大6MeV(6/3MeV交替双能)				
加速粒子	电子				
物质识别	区分有机物、无机物,分别用特定的颜色标识				
被检查车辆最大尺寸	18m(长)×2.8m(宽)×4.8m(高)				
扫描高度	地面以上 0.4~4.8m				
扫描方式	被检物体不动,扫描装置移动				
射线束中心轴上 距靶 1 米处的剂量率	4.38Gy/h				
加速器泄漏率	不超过2E-05				
有用東方向	有用束朝北				
扫描速度	0.4m/s				

表 11-2 MT1213DE 集装箱/车辆检查系统屏蔽设计参数

屏蔽体	屏蔽设计等效铅当量 厚度 mmPb	尺寸 (m)
控制舱舱体	6.5	5*2.5*2.2 (长*宽*高)
准直器	227.5	/
横探测器臂架	130	0.1*0.1*5 (长*宽*高)
竖探测器臂架	227.5	0.1*0.1*6.5 (长*宽*高)
加速器舱舱体(后向)	332	2.7*2.5*2.2
加速器舱舱体(控制舱方向)	359	(长*宽*高)

加速器舱舱体(其余方向)


306

注: 因具体屏蔽物厚度涉及商业机密,屏蔽设计未列出舱体外壳金属的厚度。

表 11-3 屏蔽计算 TVL 表 (mm)

材料	6MeV(主射线)	6MeV (次级射线) [1]
铅	65	65

注: 6MeV(主射线)铅的TVL的取值参考NCR 151. P158 附图A.1.a;为保守考虑,散射计算时,6MeV次级射线选取 NCR 151. P158 铅 5MeV条件下对应的TVL,查附图A.1.a可知,5MeV条件下及6MeV条件下,铅的TVL接近,故取相同的参数。

NCR 151. 附图 A.1.a

根据厂家提供的资料、图纸, MT1213DE集装箱/车辆检查系统安检几何参数见表11-4。

表 11-4 MT1213DE 集装箱/车辆检查系统设备几何参数

	\$4 > \$4 \$4 -							
参数	相对靶点的距离(m)	射线束宽度 (cm)	散射面积(m²)					
集装箱	集装箱 4.98		0.031					
探测器	8.29	2.2	0.11					

11.2.2辐射环境影响计算分析方法

本根据前文辐射源项分析,本项目运营期辐射环境影响主要有①透射线、②散射线、 ③泄漏射线。

(1) 透射计算公式

根据《Radiation Protection Design Guidelines for 0.1-100MeV Particle Accelerator

Facilities》(NCRP Report No.51),透射的计算公式具体如下:

$$H_{I,d,X} = \frac{D_{I_0} B_X T}{(1.67 \times 10^{-5}) d^2} \ (\text{$\stackrel{\sim}{\triangle}$} \text{$\stackrel{\sim}{\Rightarrow}$} 11 - 1)$$

H_{I, d, x}——计算参考点剂量当量率, μGy/h;

 D_{lo} ——距源1m处的吸收剂量率, $mGy \cdot m^2/min$,厂家提供距靶1m处源强为4.38 Gy/h(73mGy/min);

Bx——X射线在屏蔽层中的透射比, 按式11-2计算;

d——X射线源与参考点间的距离, m, 见图11-1中标注距离;

T——参考点的居留因子, 计算中保守取1;

1.67×10-5为单位换算系数。

(2) X射线在屏蔽层中的透射比计算公式

根据《Radiation Protection Design Guidelines for 0.1-100MeV Particle Accelerator Facilities》(NCRP Report No.51),屏蔽穿透比的计算公式具体如下:

$$B_X = 10^{-n} = 10^{-\sum_{i=1}^{m} \frac{d_i}{TVL_i}}$$
 (公式11-2)

式中:

B_x——X射线屏蔽穿透比

n——十分之一值层的数目;

di——第i种屏蔽体厚度, cm;

TVLi——第i种屏蔽体透射线十分之一值层厚度, cm。

(3) 散射计算公式

根据《Radiation Protection Design Guidelines for 0.1-100MeV Particle Accelerator Facilities》(NCRP Report No.51),散射的计算公式具体如下:

$$H_{I,d_r,X} = \frac{D_{I0}\alpha_X AB_{Xr}T}{(1.67 \times 10^{-5})d_i^2 d_r^2} (\text{$\Delta \overline{\pm}$} 11 - 3)$$

式中:

 $H_{I,d_r,X}$ ——关注点的剂量率, μ Gy/h;

 D_{I0} _______ 距辐射源点(靶点)1m处的输出量,m $Gy \cdot m^2/min$;

 α_X ——散射因子,参考《辐射防护导论》中图6.4,反射系数保守取值,对于铅取 5×10^{-3} (准直器、探测器),对于铁取 4×10^{-3} (集装箱)(垂直入射,散射角为 60°)进行计算;

A——散射面积, m²;

Bxr——X射线在屏蔽层中的透射比,同Bx,按公式11-2计算;

T——参考点的居留因子, 计算中保守取1;

di——辐射源点(靶点)至散射物体的距离, m: 见图11-1中标注距离:

dr——散射体至关注点的距离, m: 见图11-1中标注距离;

1.67×10-5为单位换算系数。

(4)漏射计算公式

根据《辐射防护手册第一分册辐射源与屏蔽》,10.4电子加速器屏蔽,漏射辐射可以按下式计算:

$$\dot{H} = \frac{\dot{H}_0 \times f}{R^2} \times B$$
(公式11-4)

 \dot{H} ——计算点剂量率, μ Gy/h;

 H_0 —源项剂量率, μ Gy/h;

B——屏蔽穿透比,同Bx,按式11-2计算;

f——加速器泄漏率;

R——源点至关注点的距离, m。

11.2.3 辐射环境影响分析

本项目为无实体屏蔽,H986检查区域设置围栏,围栏张贴电离辐射警示标志,无关人员不得入内,进行安检时,司机下车进入司机等候区,除操作H986的辐射工作人员外,H986检查区域(围栏内)无其他人员。故在检查区域四周人员居留位置以及H986控制舱内设置关注点,进行辐射环境影响预测。各关注点分布情况见图11-1。

- ①点:进口/出口档杆外30cm处: (探测器散射、集装箱散射+加速器舱漏射)。
- ②点:探测器臂正后方围栏区域外30cm处; (探测器透射)。
- ③点:探测器臂侧后方围栏区域外30cm处: (加速器舱漏射)。
- ④点:加速器舱侧后方围栏区域外30cm处:(探测器散射、集装箱散射+加速器舱漏射)。
- ⑤点:控制室内系统操作人员操作位处; (探测器散射、集装箱散射+加速器舱漏射)。

- ⑥点:司机等候区,设备运行区域西侧,距设备运行区域约15m; (探测器散射、集装箱散射+加速器舱漏射)。
- ⑦点:车辆等候区,设备运行区域东南侧,距设备运行区域约43m; (探测器散射、集装箱散射+加速器舱漏射)。

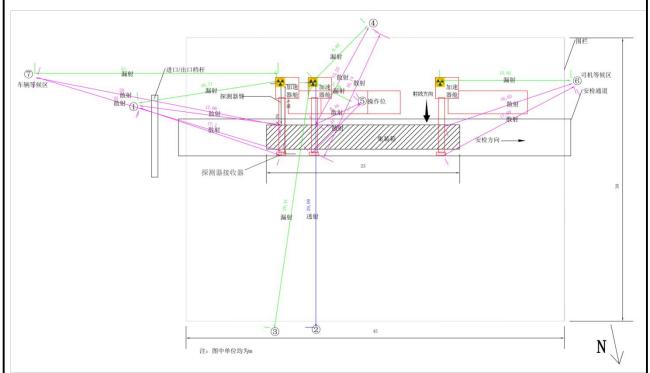


图11-1 关注点示意图

本项目H986运行区域各关注点处的剂量计算过程如下:

表 11-5 各预测点屏蔽透射比计算结果

序号		射线类型	屏蔽情况	TVL	屏蔽穿透
)		<i>51.</i> 104.114 <i>5.</i> 1	(mm)	比(Bx)
	NH E UL E MAT M 20 M	探测器散射、集装箱散射	/	/	/
1	进口/出口档杆外30cm处;	加速器舱漏射	加速器舱壁306mmPb	65	1.96E-05
2	探测器臂正后方围栏区域外 30cm处;	探测器透射	竖探测器臂227.5mmPb	65	3.16E-04
3	探测器臂侧后方围栏区域外 30cm处;	加速器舱漏射	加速器舱壁306mmPb	65	1.96E-05
(4)	加速器舱侧后方围栏区域外	探测器散射、集装箱散射	/	/	/
4)	30cm处;	加速器舱漏射	加速器舱壁(后向)332mmPb	65	7.80E-06
	 控制室内系统操作人员操作位	探测器散射、集装箱散射	控制舱舱壁6.5mmPb	65	7.94E-01
(5)	处;	加速器舱漏射	加速器舱壁(控制室方向) 359mmPb	65	3.00E-06
	司机等候区,设备运行区域西	探测器散射、集装箱散射	/	65	/
6	侧,距设备运行区域约15m;	加速器舱漏射	加速器舱壁(控制室方向) 359mmPb	65	3.00E-06
(7)	车辆等候区,设备运行区域东	探测器散射、集装箱散射	/	/	/
	南侧, 距设备运行区域约43m;	加速器舱漏射	加速器舱壁306mmPb	65	1.96E-05

表11-6 关注点辐射剂量率计算结果(透射)

关注点	关注点描述	D _{Io} mGy/min	B_x	d(m)	$H_{I, d, x}$ $\mu Gy/h$
2	探测器臂正后方围栏 区域外30cm处;	73	3.16E-0 4	29.09	1.63E+00

表11-7 关注点辐射剂量率计算结果(散射)

关 注 点	关注点描述	射线类型	D _{Io} mGy/ min	α_{x}	A	B_{Xr}	Т	di (m)	dr (m)	$H_{I,d_r,X}$ $\mu \mathrm{Gy/h}$	剂量率 (合) μGy/h
(1)	进口/出口档	探测 器散 射	73	5.00E-03	0.11	/	1	8.29	17.7	1.12E-01	1.87E-01
	杆外30cm处	集装 箱散 射	73	4.00E-03	0.031	/	1	4.98	17.06	7.51E-02	1.8/E-01
(4)	加速器舱侧 后方围栏区	探测 器散 射	73	5.00E-03	0.11	/	1	8.29	16.14	1.34E-01	2.59E-01
4)	域外30cm 处;	集装 箱散 射	73	4.00E-03	0.031	/	1	4.98	13.22	1.25E-01	2.59E-01
(5)	控制室内系 统操作人员	探测 器散 射	73	5.00E-03	0.11	7.94 E-01	1	8.29	8.41	3.93E-01	8.50E-01
3)	操作位处;	集装 箱散 射	73	4.00E-03	0.031	7.94 E-01	1	4.98	6.16	4.57E-01	8.30E-01
(6)	司机等候区, 设备运行区 域西侧,距设	探测 器散 射	73	5.00E-03	0.11	/	1	8.29	17.69	1.12E-01	1.97E-01
0)	备运行区域 约15m;	集装 箱散 射	73	4.00E-03	0.031	/	1	4.98	16.03	8.51E-02	1.7/E-UI
(7)	车辆等候区, 设备运行区 域东南侧,距	探测 器散 射	73	5.00E-03	0.11	/	1	8.29	45	1.73E-02	4.33E-02
U	设备运行区 域约43m;	集装 箱散 射	73	4.00E-03	0.031	/	1	4.98	29	2.60E-02	4.33E-02

表11-8 关注点辐射剂量率计算结果(漏射)

关注 点	关注点描述	射线类型	$\overset{ullet}{H}_0 \mu ext{Gy/h}$	f	В	R (m)	<mark>•</mark> 剂量率 μGy/h
1	进口/出口档杆外 30cm处;	加速器舱 漏射	4.38E+06	2.00E-05	1.96E-05	16.71	6.15E-06
3	探测器臂侧后方围 栏区域外30cm处;	加速器舱 漏射	4.38E+06	2.00E-05	1.96E-05	29.41	1.99E-06
4	加速器舱侧后方围 栏区域外30cm处;	加速器舱漏射	4.38E+06	2.00E-05	7.80E-06	9.02	8.40E-06

(5)	控制室内系统操作 人员操作位处;	加速器舱漏射	4.38E+06	2.00E-05	3.00E-06	5.09	1.01E-05
6	司机等候区,设备运行区域西侧,距设备运行区域约15m;	加速器舱漏射	4.38E+06	2.00E-05	3.00E-06	15.62	1.08E-06
7	车辆等候区,设备运行区域东南侧,距设备运行区域约43m;	加速器舱漏射	4.38E+06	2.00E-05	1.96E-05	43	9.29E-07

表11-9 各预测点屏蔽透射因子计算结果(汇总)

序号	关注点描述	射线类型	剂量率 μGy/h	剂量率合 μGy/h	
		探测器散射、集装箱散射	1.87E-01	1.87E-01	
(1)	进口/出口档杆外30cm处;	加速器舱漏射	6.15E-06		
2	探测器臂正后方围栏区域外 30cm处;	探测器透射	1.63E+00	1.63E+00	
3	探测器臂侧后方围栏区域外 30cm处;	加速器舱漏射	1.99E-06	1.99E-06	
(4)	加速器舱侧后方围栏区域外	探测器散射、集装箱散射	2.59E-01	2.59E-01	
4	30cm处;	加速器舱漏射	8.40E-06	2.39E-UI	
(5)	控制室内系统操作人员操作	探测器散射、集装箱散射	8.50E-01	8.50E-01	
	位处;	加速器舱漏射	1.01E-05	0.30E-01	
	 司机等候区,设备运行区域西	探测器散射、集装箱散射	1.97E-01		
6	侧,距设备运行区域约15m;	加速器舱漏射	1.08E-06	1.97E-01	
	车辆等候区,设备运行区域东	探测器散射、集装箱散射	4.33E-02		
7	南侧,距设备运行区域约 43m;	加速器舱漏射	9.29E-07	4.33E-02	

由上表计算结果可知:关注点剂量率最大计算值为1.63E+00μGy/h(探测器臂正后方围栏区域外30cm处),控制室操作位剂量率为8.50E-01μGy/h,满足《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)中场所辐射水平中检查系统监督区边界处的周围剂量当量率应不大于2.5μSv/h,以及操作人员操作位置的周围剂量当量率应不大于1.0μSv/h的限值要求。

11.2.4 年有效剂量估算

本项目各保护目标剂量估算公式如下:

$$H = \overset{\bullet}{H} \times t \times T \times 10^{-3} \qquad (\triangle \vec{\Xi} 11-5)$$

式中:

H: X-γ射线外照射人均年有效剂量当量,mSv;

 \dot{H} : 关注点处的剂量率, $\mu Sv/h$;

t: X射线照射时间, h:

T: 居留因子。

保护目标剂量率选取依据:

以上述最大工况下的辐射剂量计算结果,估算本项目辐射工作人员及公众成员的受照剂量。按照最不利的情况,辐射工作人员所在操作位及人员进出防护栏处考虑全居留,居留因子取1;项目周边评价范围内流动人员考虑部分居留,取居留因子为1/16。

根据建设单提供的资料,本项目该检查系统一年工作250天,一天工作8个小时,该设备扫描速度为0.4m/s,一次扫描23m长(取保守值,包括集装箱和货车车头)的集装箱需用时约57.5s,每小时检查30辆左右集装箱车辆,则1年中加速器出束时间最多为8h×30×250d×57.5s/3600≈958h。辐射工作人员每班6人,5天8小时工作制,年工作250天。

根据上述参数,本项目辐射工作人员及公众成员最大受照剂量计算结果见表11-6。

关 照射 照射 剂量率 居留 年有效剂量 剂量限值 注 位置说明 时间 类型 $(\mu Sv/h)$ 因子 (mSv/a)(mSv/a)点 h 进口/出口档杆外30cm 公众 1/16 1.12E-02 0.1 处; (公众) (1)958 1.87E-01 进口/出口档杆外30cm 职业 1 1.79E-01 5 处; (海关引导人员) 探测器臂正后方围栏区 (2) 公众 1.63E+00 9.76E-02 958 1/16 0.1 域外30cm处(公众) 探测器臂侧后方围栏区 公众 958 1.99E-06 1/16 1.19E-07 0.1 域外30cm处(公众) 加速器舱侧后方围栏区 (4) 公众 958 2.59E-01 1/16 1.55E-02 0.1 域外30cm处(公众) 控制室内系统操作人员 (5)操作位处(海关工作人 职业 958 8.50E-01 1/16 5 8.14E-01 员) 司机等候区,设备运行区 (6) 域西侧, 距设备运行区域 公众 958 1.97E-01 1/16 0.1 1.18E-02 约15m(公众) 车辆等候区,设备运行区 $\overline{(7)}$ 域东南侧, 距设备运行区 公众 958 4.33E-02 1/16 2.59E-03 0.1 域约43m(公众)

表11-10 车辆检查装置运行时各关注点剂量率计算结果一览表

根据表11-10的计算结果可知:

本项目投入运行后,辐射工作人员的最大年有效剂量为8.14E-01mSv/a,公众成员的最大年有效剂量分别为9.76E-02mSv/a,均满足《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中规定的辐射工作人员、公众成员年有效剂量限值分别为5mSv/a、0.1mSv/a的要求。

11.2.5 臭氧、氮氧化物分析

加速器电离空气产生的臭氧、氮氧化物分析,参考《电子加速器辐照装置辐射安全和防护》(HJ 979-2018)附录B有害性气体的产生和排放计算。

空气在辐射照射下产生臭氧(O₃)和氮氧化物(NO_x)等有害气体。氮氧化物的产额约为臭氧的三分之一,且以臭氧的毒性最高,所以主要是考虑臭氧的产生及其防护。

(1) 臭氧的产生

平行电子束所致O₃的产生率可以用以下公式进行保守的估算:

P=45dIG (公式 11-6)

式中:

- P——单位时间电子束产生O3的质量(mg/h);
- I——电子束流强度(mA); 本项目按I=10mA估算;
- d——电子在空气中的行程(cm),本项目取100cm。
- G——空气吸收100eV辐射能量产生的O3分子数,保守值可取为10。

P=45*100*10*10=4.50E+05 (mg/h)

则臭氧年排放总量=4.50E+05*958=431.1kg,臭氧月排放总量=431.1/12=35.93kg。本项目无实体屏蔽,场所为露天开放式,可看做无限大的空间。场所由自然通风及车辆进出带动空气流动交换,臭氧浓度可以满足《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)中"辐射源室内应有良好的通风,以保证臭氧的浓度低于0.3mg/m³"的要求,以及《环境空气质量标准》(GB3095-2012)中二级标准中1小时均值≤0.2mg/m³的要求。

11.2.6 声环境相关分析

运营期在车辆进入的醒目位置配备警示标志牌,禁止安检车辆鸣笛;车辆检查装置对 于被检车辆有限速要求,被检车辆均为低速通过,由此,被检车辆产生的噪声较低。

11.3 事故影响分析

11.3.1 事故工况

加速器在意外情况下,可能出现的辐射事故有:

- (1)由于管理不善,在加速器出東前工作人员、周围公众成员尚未撤离扫描通道或者 在系统出東时现场工作人员、周围公众成员误入辐射控制区,导致上述人群受到不必要的 照射。
- (2)安全联锁装置或报警系统发生故障的情况下,有人误入正在运行的加速器扫描通道,工作人员无法阻止其进入或无法立即终止加速器工作,导致误入人员受到超剂量照射

的情况。

(3) 在维修加速器的时候,加速器误出束,造成维修人员的误照射。

11.3.2 事故预防措施

- (1)制定自行检查和年度评估制度,定期检查车辆检查系统的安全装置和防护措施、设施的安全防护效果,落实各项管理制度的执行情况,及时整改事故隐患,预防发生事故;
- (2)建设单位应按相关规定补充完善与本项目有关的安全管理规章制度、安全操作管理程序及应急预案;
- (3)在系统每次开机扫描前,工作人员应检查联锁装置,确保扫描通道内无人员逗留方可开始操作;
- (4)引导员工作时必须随身携带个人剂量报警仪,不允许在没有剂量仪监控的情况下进入设备运行区域,以免超剂量事故的发生;
 - (5)系统操作人员应随时通过视频监控系统查看扫描通道内情况;
 - (6)严格按照操作规范操作,做好个人防护,杜绝发生意外照射事故;
- (7)中华人民共和国阿勒泰海关应聘请同方威视技术人员定期对安全联锁装置及剂量报警仪进行检查,如果发现问题,应立即完善,恢复正常后方可运行。
 - (8)一旦发生辐射事故,应快速启动应急预案,同时向公安部门报警并积极协查;
- (9)根据《关于建立放射性同位素与射线装置辐射事故分级处理和报告制度的通知》在 事故发生后2小时填写《辐射事故初始报告表》向生态环境主管部门和公安部门报告。造成 或可能造成人员超剂量照射的,还应同时向当地卫生行政部门报告。

表12 辐射安全管理

12.1 辐射安全与环境保护管理机构的设置

根据《中华人民共和国环境保护法》、《放射性同位素与射线装置安全和防护条例》(国务院第449号令)等有关法律法规及国家标准的要求,正确应对突发性放射性事故,确保事故发生时能快速有效地进行现场应急处理、处置,维护和保障人员安全,维护正常的生产秩序,中华人民共和国阿勒泰海关应成立辐射安全防护管理机构,制订辐射环境管理规章制度。阿勒泰海关已经设立主管领导组成辐射防护与安全工作小组,全面负责辐射防护与安全工作,规定各成员相应的职责,做到分工明确、职责分明。领导小组应加强监督管理,切实保证各项规章制度的实施,做到有效管理,责任到人。

具体职责如下:

- (1)组织贯彻落实国家和地方政府、中华人民共和国阿勒泰海关有关辐射安全与环境保护工作的方针、政策:
- (2) 定期召开会议,听取辐射安全与环境保护工作情况汇报,讨论决定辐射安全与环境保护工作中的重大问题和采取的措施;
 - (3) 组织开展射线装置安全检查活动,组织处理、通报事故:
- (4)组织制定和完善射线装置管理制度和操作规程,监督检查各规章制度的执行,督 促整改辐射事故隐患。

12.2 辐射安全管理规章制度

- 1、辐射安全与环境保护管理机构:阿勒泰海关在2024年3月12日发布了《阿勒泰海关关于成立辐射安全领导小组的通知》(附件6)。《通知》确定辐射工作安全责任人,设置辐射防护领导机构。辐射安全管理领导小组为:组长:郑军;副组长监专职管理人员:尹达;成员:古丽达纳·塔布斯别克、李章杰、贾飞虎、许康。负责射线装置的安全应用和防护工作,以确保射线装置应用过程的安全使用防护。辐射防护领导机构应规定各成员的职责做到分工明确、职责分明。
- 2、人员资质:辐射工作人员应通过核技术中心网上考核,考核通过后,方可上岗。人员管理制度应包括:人员培训制度,人员健康及个人计量管理制度,辐射工作人员岗位职责。
- 3、中华人民共和国阿勒泰海关已制定的辐射相关管理制度,包括:《阿勒泰海关H986大型集装箱检查系统辐射防护和安全保卫制度》《阿勒泰海关H986大型集装箱检查系统辐射防护制度》《阿勒泰海关H986大型集装箱检查系统个人剂量管理和健康管理制度》《阿勒泰海关H986大型集装箱检查系统海关H986大型集装箱检查系统

监测方案》《阿勒泰海关H986大型集装箱检查系统设备检修维护制度》《阿勒泰海关H986 大型集装箱检查系统工作人员培训方案》《塔克什肯口岸监管环节核与辐射恐怖袭击事件应 急预案》等规章制度。

- 4、中华人民共和国阿勒泰海关应制定工作场所辐射防护措施:
- (1) 工作区域划分控制区和监督区,并设立或标注明显的标志或标识牌;
- (2) 配备个人防护用品和监测仪器。
- 5、中华人民共和国阿勒泰海关应配备与辐射类型和辐射水平相适应的防护用品和监测 仪器,监测仪器包括个人剂量报警仪、便携式剂量监测仪。

12.3 辐射监测

为了及时掌握显现装置工作场所周围的辐射水平,本项目应建立必要的监测计划,包括设备运行期及个人剂量监测计划,要建立监测资料档案。

- 1、监测方案:应委托有资质的单位定期对工作场所周围环境进行辐射环境监测,并建立监测技术档案。
 - ①监测频度:每年常规监测一次。
 - ②监测范围:工作场所周围环境。
 - ③监测项目: X-γ辐射剂量率。
 - ④监测记录应清晰、准确、完整并纳入档案进行保存。
 - 2、监测仪器: 应配置便携式X、γ辐射剂量监测仪。
 - 3、工作场所辐射监测: 定期对职业人员工作场所辐射水平进行监测。
- 4、个人剂量监测:从事辐射工作人员必须佩戴个人剂量率仪并定期检测,建立个人计量管理档案。《货物/车辆辐射检查系统的放射防护要求》(GBZ 143—2015)中相关内容对照情况见下表。

表12-1 辐射防护监测与检查

	V				
标准要求	内容	本项目安全操作措施	符合 情况		
验收监测 和检查	检查系统出厂前,生产单位应按本附录A中的验收监测和检查要求,对设备的辐射防护性能进行全面的型式试验,确认与辐射防护和安全有关的设计要求得到满足后方可出厂。	本项目车载检查系统出厂前需要按照《货物/车辆辐射检查系统的放射防护要求》(GBZ 143-2015)中附录A的验收监测和检查要求出具检测报告。 本项目正式投入使用前,口岸应按国家有关法规规定,委托具有相应资质	建单已诺实待		
	按国家有关法规规定委托具有相应资质的 机构进行验收监测和检查,并经审管部门 验收合格后方可投入正式运行。	新有天伝规规定,安托其有相应页质 的机构进行验收监测和检查,并经审 管部门验收合格后方可投入正式运 行。	实后 符合		

常规监测 和检查

检查系统在正常运行中,运营单位应按附录A要求定期进行常规监测和安全检查,及时排除隐患,杜绝事故的发生。

口岸按照《货物/车辆辐射检查系统的放射防护要求》(GBZ 143-2015)中附录A要求定期进行常规监测和安全检查,及时排除隐患,杜绝事故的发生。

12.4 辐射事故应急预案

根据《放射性同位素与射线装置安全和防护条例》第四十条之规定,中华人民共和国阿勒泰海关应制定辐射事故应急预案。阿勒泰海关现已制定《阿勒泰海关H986集装箱检查系统辐射事故应急管理办法》。

本评价项目发生事故的风险主要是中华人民共和国阿勒泰海关的管理问题,因此平时必 须严格执行各项管理制度,定期对工作场所进行辐射水平监测等安全设施及其他各项辐射防护措施,严格遵守操作规程。

1、应急处置的基本原则

辐射安全突发事件的处置, 遵循以下原则。

- (1)预防为主、常备不懈。坚持预防为主的方针,做好各项日常检查工作,做到常备不懈。宣传普及环境应急知识,不断提高工作人员环境安全意识。建立和加强突发环境事件的预警机制,切实做到及时发现、及时报告、快速反应、及时控制。
- (2) 统一领导,分工负责。单位辐射安全实行法人负责下的分级定责管理,不同等级的突发事件,启动相应级别的预警和响应。
- (3) 依靠科学、快速反应。不断完善应急反应机制,强化人力、物力、财力贮备,增强应急处理能力;依靠科学,加强指导,规范业务操作,实现应急工作的科学化、规范化。

2、应急组织及职责

- (1)第一责任人负责总体指挥和调配;辐射防护安全领导小组负责具体实施应急行动;安全防护部门负责现场监控辐射剂量以及配合生态环境、卫生健康的剂量监控;各部门的安全员负责清点岗位人员,操控装置恢复安全状态,在上级的指令下完成设备的转、停、修复和配合工作;办公室负责对外联络、上报、请示、引导和接待工作,文档的记录、收集、整理和备案。
- (2) 应急调配原则:即在发生应急事件时,第一责任人或第一责任人指派的总负责人,可以临时调配中华人民共和国阿勒泰海关塔克什肯口岸所有员工投入抢险和救治工作。如果有生态环境等上级主管部门的指挥人员在场,应听从其调配。
 - (3) 事故报告和评估:辐射事故责任报告单位及人员发现或获知辐射事故时,应在2小

时内向所在市、县级以上生态环境行政主管部门报告。辐射事故的报告的主要包括:辐射事故的类型、发生时间、地点、污染源、人员受害情况、受害面积及程度、辐射事故潜在的危害程度、转化方式趋向等初步情况。

- (4) 应急程序: 发生辐射事故时,则防止公众进入警戒区,及时将事故情况上报使用 地生态环境行政主管部门,人员伤亡情况上报卫生健康行政主管部门。通过以上措施来有效 防范和处置突发事故,将事故发生的概率和事故危害控制到最低程度。一旦发生辐射事故, 将及时处理,采取必要的防范措施,根据《关于建立放射性同位素与射线装置辐射事故分级 处理和报告制度的通知》(环发〔2016〕145号),在事故发生后2小时内填写《辐射事故初 始报告表》,由辐射事故应急小组上报当地生态环境行政主管部门及省级生态环境行政主管 部门,同时上报公安部门,造成或可能造成人员超剂量照射的,还应同时向当地卫生行政部 门报告。并及时组织专业技术人员排除事故。配合各相关部门做好辐射事故调查工作。
- (5)监督检查安全培训及健康管理:中华人民共和国阿勒泰海关从事辐射操作的工作人员应持证上岗,对操作人员的防护及健康等情况进行抽查,以便对从事辐射操作工作人员的辐射剂量进行监督,杜绝超剂量上岗。中华人民共和国阿勒泰海关应配备便携式监测仪器,对工作场所进行不定期的监测。
- (6) 应急培训与演习:辐射安全管理机构负责根据实际情况,组织和实施本单位的辐射事故应急演习,每年至少组织一次辐射应急演习。演习结束后,及时进行总结,以评估和验证辐射事故应急预案的可行性和有效性,必要时修订应急管理办法和响应程序。

12.5 竣工环保验收

根据《建设项目环境保护管理条例》、《建设项目竣工环境保护验收暂行办法》等相关规定,本项目试运行三个月内,建设单位应当按照生态环境行政主管部门规定的标准和程序,对配套建设的环境保护设施进行自主验收,并编制验收报告,建设单位不具备编制验收监测报告能力的,可以委托有能力的技术机构编制。建设单位对受委托的技术机构编制的验收监测报告结论负责。环评建议本项目竣工环境保护验收内容如下:

次工厂发出厂场的基 次 门石					
序号	验收项目	主要内容及要求			
1	环保手续完善	环评手续齐备,取得辐射安全许可证。			
2	项目建设情况	实际建设内容及规模与环评内容一致。			
3	剂量限值达标	满足《电离辐射防护与辐射源安全基本标准》(GB 18871-2002)中"剂量限值" 要求			

表12-2 竣工环境保护验收内容

4	管理规章制度	制定各项管理规章制度和操作规程,并张贴于控制室内墙上。
5	事故应急预案	制定了详细完整、合理可行的《阿勒泰海关H986集装箱检查系统辐射事故应急管理办法》。
6	落实监测计划	每两年一次职业健康检查、每季度一次个人剂量监测,落实日常自行环境监测, 并有详细记录。在项目竣工验收时,进行一次验收监测。
7	人员持证情况	职业人员均参加辐射安全与防护培训,并取得合格证书。
8	配置防护用品	为辐射工作人员配备个人剂量计及个人剂量报警仪。
9	年度评估	射线装置的安全和防护状况进行年度评估,并于每年1月31日前向发证机关提交上一年度的评估报告。

验收监测(调查)报告编制完成后,建设单位应当根据验收报告结论,提出验收意见。存在问题的,建设单位应当进行整改,改完成后方可提出验收意见。

12.6 环保投资

本项目总投资2000万元,其中环保投资24.6万元,占总投资的1.23%,本项目环保投资一览表见表12-3。

表12-3 环保投资一览表

序号	项目	环保措施	投资 (万元)			
	施工期					
1	噪声	合理安排工期、物理减震措施	0.6			
2	固体废物	垃圾清运、回收	1.0			
	运营期					
1	电离辐射	购置辐射防护用品、辐射监测仪器、 个人剂量卡、辐射安全知识培训考核	7.0			
2	环评、验收、年度检测	现场检测,报告编制	16.0			
	合计					

表13 结论与建议

13.1 结论

13.1.1 辐射安全与防护分析结论

辐射环境管理措施:阿勒泰海关已设立了辐射安全与环境保护管理机构,并建立了完善的规章制度、操作规程,落实安全、保卫、环保等措施,制定了辐射事故应急预案等。

污染防治措施:本项目车辆检查系统采取自屏蔽和距离防护措施进行 X 射线的辐射防护,可满足《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)的要求。

安全防护措施:辐射工作场所进行分区管理,车辆检查系统配置了出束控制开关、门 联锁、紧急停束装置、加速器输出剂量联锁、声光报警安全装置、监视装置、语音广播设 备等装置。辐射工作人员按要求佩带个人剂量计并建立个人剂量档案;控制台的控制钥匙 由专人管理,并做好使用记录。配备了适当的监测仪器和防护用品。

阿勒泰海关塔克什肯口岸新建H986集装箱车辆检查系统属于新建项目,车辆检查装置在使用过程中会对周围环境产生一定的辐射影响,但只要严格按照国家法律法规要求和本报告提出的要求,做好辐射防护和安全管理的各项要求,所致环境影响及辐射工作人员和周围公众成员接受的辐射剂量可符合《电离辐射防护与辐射源安全基本标准》(GB18871-2002)、《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)要求。

13.1.2环境影响分析结论

(1) 施工期环境影响分析

本项目建设内容主要为安检区域混凝土地面浇筑、设备安装、内部装修等,施工期主要环境影响为扬尘、废水、噪声和固体废物,无辐射环境影响,在施工阶段采取相关措施,对周围环境影响较小。

(2) 运行期环境影响分析

根据预测结果,关注点剂量率最大计算值为1.63E+00μGy/h (探测器臂正后方围栏区域外30cm处),控制室操作位剂量率为8.50E-01μGy/h,满足《货物/车辆辐射检查系统的放射防护要求》(GBZ143-2015)中场所辐射水平中检查系统监督区边界处的周围剂量当量率应不大于2.5μSv/h,以及操作人员操作位置的周围剂量当量率应不大于1.0μSv/h的限值要求。

根据预测结果,本项目投入运行后,辐射工作人员的最大年有效剂量为8.14E-01mSv/a,公众成员的最大年有效剂量分别为9.76E-02mSv/a,均满足《电离辐射防护与辐射源安全基本标准》(GB18871-2002)中规定的辐射工作人员、公众成员年有效剂量限值分别为5mSv/a、

0.1mSv/a的要求。

本项目不产生放射性三废,产生的废水、废气、固体废物,采取相关措施,对周围环境影响较小。

13.1.3 可行性分析结论

(1) 选址合理性

项目环境辐射本底未见异常、射线装置近距离范围内无人员长久居留,从辐射安全和环境保护的角度考虑,布局可行。

(2) 实践正当性

项目使用一台车辆检查系统对集装箱货物、集装箱夹层、偷渡藏匿等实现不开箱检查,减少人工安检工作量和劳动强度。对完善阿勒泰海关塔克什肯口岸的智能化通关监管系统,提高通关效率、有效打击走私犯罪等具有重要意义。项目实施获得的利益远远大于所造成的损害,并且符合《电离辐射防护与辐射源安全基本标准》中关于辐射防护"实践正当性"的要求。

(3) 国家相关政策符合性

经对照《产业结构调整指导目录》(2024年本),本项目属于鼓励类中"六、核能/核技术应用:同位素、加速器及辐照应用技术开发,辐射防护技术开发与监测设备制造",符合国家相关产业政策。

(4) 辐射安全管理可行性

本项目辐射工作人员均配备个人剂量计,按照相关规定,阿勒泰海关应委托个人剂量 监测资质单位长期对本项目放射工作人员进行个人剂量监测,安排辐射工作人员到具有相 应资质的单位定期进行职业健康检查。未取得辐射安全与防护合格成绩单的人员按要求积 极组织人员参加环境保护部门举办的各项辐射安全和防护专业知识培训,并且严格落实《辐 射工作人员培训制度》。阿勒泰海关严格执行相关法律法规、标准规范等文件,严格落实 各项辐射安全管理、防护措施的前提下,其从事辐射活动的技术能力基本符合相应法律法 规的要求。

阿勒泰海关塔克什肯口岸新建H986集装箱车辆检查系统严格按照国家有关辐射防护相关规定的要求,制定相关管理规章制度、应急措施,切实落实本报告中提出的污染、辐射防护措施和建议,并应做到:

(1)工作人员工作时佩戴个人剂量计,穿戴防护用品,定期对个人剂量进行登记,建立个人剂量档案,发现个人剂量异常时及时查明原因,及时纠正处理。

- (2)阿勒泰海关应配备与辐射类型和辐射水平相适应的防护用品和监测仪器,包括个 人剂量报警仪、便携式剂量监测仪。
- (3)工作人员取得培训合格证书后方可上岗,同时进行辐射安全和防护专业知识及相关法律法规的培训。

综上所述,阿勒泰海关在落实本报告提出的各项污染防治措施和管理措施后,本项目 将具有与其所从事的辐射活动相适应的技术能力和具备相应的辐射安全防护措施,其运行 对周围环境产生的影响能够符合辐射环境保护的要求,从辐射环境保护的角度论证,该项 目的建设和运行是可行的。

13.2 建议

- 1、建设单位应及时办理辐射安全许可证,经当地生态环境主管部门批准通过合格后方可开展业务。
- 2、配备足够的辐射防护用品,工作人员操作射线装置时必须佩戴防护用品、个人剂量计和剂量报警仪。
- 3、所有放射性工作人员必须通过辐射安全知识培训后方可上岗;操作人员还必须经过操作业务培训,熟练掌握操作方法后方可操作射线装置。
 - 4、建立健全辐射安全与环境管理体系,制定辐射事故应急预案。
- 5、在设备安装调试完成后,聘请专业团队对控制室周围增加铅屏蔽,并在控制室现场 监测合格后方可投入使用。

表14 审批

下一级环保部门预审意见	
	公章
经办人:年月日	
审批意见	
经办人: 年月日	公章